Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lernende Sehprothese auf der Hannover-Messe

11.04.2007
Als die Idee vor einigen Jahren aufkam, klang sie bestechend: Man könnte doch in die geschädigte Netzhaut von Blinden Elektroden implantieren und daran eine Minikamera anschließen, um so das Sehvermögen wieder herzustellen.

Mit den ersten klinischen Tests kam jedoch die Ernüchterung: Die Patienten konnten nach der Operation nicht einmal einfache Formen voneinander unterscheiden. Neuroinformatiker der Universität Bonn stellen auf der Hannover-Messe eine Software vor, die das ändern soll: Mit ihr "lernt" die Sehprothese, genau die Signale zu liefern, die das Gehirn erwartet und interpretieren kann. Die lernende Sehprothese ist vom 16. bis 20. April auf dem Gemeinschaftsstand der Wissenschaftsregion Bonn zu sehen (Halle 2, Stand D35).

Knapp zwei Dutzend Patienten in Deutschland und den USA haben bislang eine Sehprothese implantiert bekommen. Dazu öffnen Mediziner den Augapfel und befestigen auf der Netzhaut eine dünne Folie. Von ihr ragen haarfeine Kontakte an die Nervenzellen, die die obere Netzhautschicht bilden. Diese elektrischen Reizkontakte speisen die Kamera-Signale in den Sehnerv ein. Die Kamera ist beispielsweise an einer Brille befestigt und überliefert ihre Informationen drahtlos an die künstliche Netzhaut.

Die Ergebnisse erfüllen bislang nicht die hochgesteckten Erwartungen. "Die Kamera liefert elektrische Impulse, mit denen das Gehirn kaum etwas anfangen kann", erklärt Professor Dr. Rolf Eckmiller vom Bonner Institut für Informatik. "Unser Verfahren übersetzt die Kamerasignale in eine Sprache, die das Sehzentrum versteht." Doch leider spricht das Sehzentrum jedes Menschen einen anderen Dialekt - das macht die Dolmetscher-Leistung schwierig. Daher hat der Neuroinformatiker und Mediziner zusammen mit seinen Doktoranden Oliver Baruth und Rolf Schatten den "Retina Encoder" entwickelt. Für den Sprung in die medizinische Praxis sucht er auf der Hannover-Messe nach Industriepartnern.

Übersetzer in der Brille

"Der Retina Encoder ist im Prinzip ein Computerprogramm, das die Signale der Kamera umwandelt und an das Netzhaut-Implantat weiter gibt", erläutert Oliver Baruth die Funktionsweise. "In einem kontinuierlichen Prozess lernt der Encoder, wie er das Kamerasignal verändern muss, damit der jeweilige Patient das Bild erkennen kann." Die Erprobung des Lern-Dialoges erfolgt gegenwärtig mit normalsichtigen Probanden. Die Kamerabilder werden dabei vom Retina Encoder übersetzt und dann an eine Art "virtuelles Sehzentrum": weiter gegeben. Dort wird simuliert, wie das Gehirn die umgewandelten Kameradaten interpretieren würde.

Der Retina Encoder weiß zunächst nicht, welche Sprache das virtuelle Sehzentrum spricht. Daher übersetzt die Software das Ausgangsbild - beispielsweise einen Ring - in verschiedene zufällig gewählte "Dialekte". Dabei entstehen Bildvarianten, die einem Ring mal mehr, mal weniger ähneln. Die Versuchsperson sieht diese Varianten auf einem kleinen Bildschirm, der in ein Brillengestell integriert ist. Per Kopfbewegung wählt sie die Versionen aus, die einem Ring am ähnlichsten sehen. Die lernfähige Software zieht daraus Rückschlüsse, wie sie die Übersetzung verbessern muss. Im nächsten Zyklus präsentiert sie darauf basierend mehrere neue Bilder, die dem Original schon ähnlicher sehen: Der Retina Encoder passt sich so schrittweise an die Sprache des virtuellen Sehzentrums an. Im Test funktioniert das auch sehr gut; an Patienten haben die Wissenschaftler ihr Verfahren jedoch noch nicht erprobt. Im Prinzip ließe sich der Encoder aber binnen weniger Monate in bereits implantierte Sehprothesen integrieren, betonen die Forscher.

Beim gesunden Menschen ist eine Art natürlicher Retina Encoder bereits in die Netzhaut integriert: Vor den Lichtsinneszellen liegen nämlich vier Schichten von speziellen Nervenzellen. "Die Netzhaut ist ein durchsichtiger Biocomputer", sagt Eckmiller. "Sie wandelt die elektrischen Impulse der Stäbchen und Zapfen in ein kompliziertes Signal um." Über den Sehnerv gelangt dieses Signal dann in das Gehirn.

Keine Wunder zu erwarten

Dort wird die komplexe Information entschlüsselt. Die Fähigkeit dazu erwirbt das Gehirn in den ersten Lebensmonaten. In dieser Zeit stellt sich das Sehzentrum individuell auf die Retina-Signale ein: Das Gehirn lernt, die vom Sehnerv gelieferten Daten zu interpretieren. Beim Erwachsenen, der im Laufe des Lebens erblindet, ist das Sehzentrum aber schon ausgereift: Es kann sich nicht mehr so einfach umstellen. "Wenn das Sehzentrum nicht mehr so flexibel ist, muss es die künstliche Netzhaut sein", betont Eckmiller: "Sie muss lernen, Signale zu liefern, mit denen das Gehirn etwas anfangen kann. Und genau diesen Lernvorgang leistet unser Retina Encoder."

Dennoch warnt er vor allzu hochgesteckten Erwartungen: "Niemand soll denken, er könne mit einer Sehprothese wieder seine Lieblingskrimis lesen. Er kann vielleicht die Gestalt grösserer Objekte erkennen und schemenhaft wahrnehmen; mehr ist auf absehbare Zeit nicht drin. Für einen Blinden bedeutet das aber einen riesigen Fortschritt: Er kann sich wieder in seiner Umgebung orientieren. Dieser Gewinn an Eigenständigkeit ist unser Ziel!"

Ansprechpartner:
Professor Dr. Rolf Eckmiller
Institut für Informatik VI der Universität Bonn
Telefon: 0228/73-4422
E-Mail: eckmiller@nero.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.nero.uni-bonn.de

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Hannover Messe: Elektrische Maschinen in neuen Dimensionen
28.03.2017 | Technische Universität Chemnitz

nachricht Industrial Data Space macht neue Geschäftsmodelle möglich
27.03.2017 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Workshop »Emissionsarme Bauprodukte und Wohngesundheit«

28.03.2017 | Seminare Workshops

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungsnachrichten

Nachwuchswissenschaftler blicken in die Quantenwelt

28.03.2017 | Seminare Workshops