Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bionik: Strukturierte Antihaftbeschichtungen nach dem Vorbild der Natur für Industrielle Produktionsabläufe

14.02.2007
In den letzten zehn Jahren erlebt der Begriff Bionik, ein Kunstwort aus Biologie und Technik, ebenfalls als "Technische Biologie" oder Biomimetik bekannt, eine stetig steigende Bedeutung.

Nach den Anfängen in Deutschland an der Universität des Saarlandes, Saarbrücken sind die beiden populärsten Beispiele aus der Grundlagenforschung die Riblet-Folie, entwickelt an der Universität Saarbrücken am Beispiel der Haut von Haien, und der Lotus-Effekt, entdeckt und in die industrielle Anwendung gebracht durch die Universität Bonn nach dem Vorbild der Blattoberseite der Lotuspflanze. Beide Entwicklungen basieren auf der zunächst erstaunlichen Entdeckung, daß die Natur feinst-strukturierte Oberflächen präferiert, wenn Ingenieure möglichst glatte einsetzen würden.

Die Firma Rhenotherm ist seit 30 Jahren auf industrielle Beschichtungen auf Fluorpolymerbasis für die Anwendungsbereiche Antihaft, Trockenschmierung und Korrosionsschutz spezialisiert und einer ständigen Weiterentwicklung von Beschichtungssystemen zur Betreuung variierender Kundenwünsche gegenüber aufgeschlossen. Einige Entwicklungen wurden patentiert, u.a. Lotuflon®, eine mikrostrukturierte Fluorpolymerbeschichtung mit unterschiedlichen Strukturebenen.

Rhenotherm engagiert sich in einem BMBF-geförderten Verbundprojekt (Betreuung VDI, FKZ 13N8676) zur Entwicklung neuartiger und dauerhafter antiadhäsiver Beschichtungen.

Sowohl in Bezug auf optimale Umströmung durch Luft oder Wasser als auch auf geringste Adhäsion von Partikeln sind mikrostrukturierte Oberflächen glatten überlegen, da die Grenzschicht der Strömung positiv beeinflußt wird. So werden bremsende Verwirbelungen vermieden und gleichzeitig die Verschmutzung reduziert, was nicht nur eine Frage der Ästhetik ist, da sie in erhöhtem Gewicht und reduzierter Stromlinienform resultiert und für Organismen durch die Verringerung des Pathogenbefalls lebenswichtig ist. Bei technischen Entwicklungen, wie der Konstruktion von Flugzeugen und Schiffen, gewinnt dieser Aspekt des Antifoulings immer mehr an Bedeutung, gerade wegen der aktuell enormen gestiegenen Treibstoff- und Transportkosten.

Biologische Strukturen sind meist in Bezug auf mehrere Probleme optimiert und werden häufig mit größeren Strukturmolekülen und deren Fähigkeit zur Selbstorganisation aufgebaut, was oftmals eine Strukturierung bedingt. Über die Selbstreinigung in Verbindung mit Wasser hinausgehend, ist die Antiadhäsionseigenschaft einer mikrostrukturierten Oberfläche von zunehmender industrieller Bedeutung: wie am Beispiel des Lotus-Effekts beschrieben, reduzieren unterschiedlichen Größenstufen (Hierarchien) der Blattoberfläche wie Blattadern, Epidermiszellen und Wachskristalle in ihrer Kombination die Kontaktfläche um bis zu 96%.

Solche Strukturen, abgeleitet von den biologischen Vorbildern, werden in den "Plasma Coatings® Systemen" der Firma Rhenotherm Kunststoffbeschichtungs GmbH verwendet.

Ausgehend von strukturierten Grundstrukturen, die auf dem Grundkörper aufgebaut werden, overcoated man diese mit verschiedenen Antihaftmaterialien.

Die Grundstruktur wird über eine Sandstrahlung durch thermisches Spritzen oder Plasmabeschichten aufgebracht. Hierzu verwendet man entweder Hartmetalle oder Keramiken (Aluoxyde, Wolframkarbiode, ...).

Über die so aufgebaute Grundstruktur bringt man dann die entsprechende Antihaftschicht auf. Diese kann aus Fluorpolymeren (Teflon) oder Siliconschichten bestehen. Der Einsatzbereich dieser Plasma-Coatings®-Schichten ist vielfältig. So wurden in der Klebstoffindustrie Umlenkwalzen für Klebebänder, Windeln, Etiketten, etc. beschichtet.

In der Druckindustrie werden Walzen für den Kaschiervorgang beschichtet. Im Bereich des Converting werden solche Beschichtungen vermehrt eingesetzt.

Die Beschichtung ist nicht nur antihaftend, sondern besitzt aufgrund ihrer Struktur auch Traktionsverhalten, was in vielen Fällen von Vorteil sein kann. Abhängig von dem Antihaftmaterial sind die Oberflächen absolut chemisch beständig, aber auch elektrisch ableitend, um elektrostatische Aufladungen zu verhindern. Selbst in der Elastomerherstellung und in der Kautschukindustrie werden diese Arten der Beschichtung verwendet.

Im Gegensatz zu diesen strukturierten Beschichtungen sind wir aber auch in der Lage, superglatte Antihaftbeschichtungen herzustellen. Dies geschieht auf der Basis von PTFE und PFA.

In mehreren Lagen mit verschiedenen Poliervorgängen erreichen wir superglatte Oberflächen.

So sind Ra-Werte von
Die Schichtdicke kann mit der Toleranz von 5 µm gefertigt werden, wodurch excellente Rundlaufgenauigkeiten erreicht werden.

Sie finden die Fa. Rhenotherm auf der Hannover Messe in Halle 006 Stand B10

Rhenotherm Kunststoffbeschichtungs GmbH
Peter - Jakob - Busch - Str. 8
47906 Kempen
Tel.: 02152/9141-0
Fax: 02152/9141-20
www.rhenotherm.de
info@rhenotherm.de
Autor: Dipl.-Ing. Volkmar Eigenbrod (GL der Fa. Rhenotherm)

| Deutsche Messe AG
Weitere Informationen:
http://www.rhenotherm.de
http://www.hannovermesse.de

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen
26.04.2017 | Rittal GmbH & Co. KG

nachricht Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen
25.04.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie