Nanomotor im Geschwindigkeitsrausch

Nanoroboter, die in den Körper geschleust werden, um Tumorzellen zu beseitigen oder verstopfte Arterien freizuräumen, sind keine reine Science-Fiction, sondern eine realistische Vorstellung von den technologischen Möglichkeiten einer nicht allzu fernen Zukunft.

Um Nanomaschinen anzutreiben, werden leistungsfähige Nanomotoren benötigt. Ein Team aus Wissenschaftlern von der University of California in San Diego (USA) und der Arizona State University (Tempe, USA) hat nun extrem schnell schwimmende Nanostäbchen entwickelt. „Diese Nanostäbchen legen etwa das 75fache ihrer eigenen Länge in einer Sekunde zurück,“ berichten Joseph Wang und seine Kollegen in der Zeitschrift Angewandte Chemie. „Damit nähern wir uns der Geschwindigkeit der effektivsten biologischen Nanomotoren an, zu denen z.B. begeißelte Bakterien gehören.“

Erste einfache Anwendungen von Nanomotoren könnten der beschleunigte Transport von pharmazeutischen Wirkstoffen zu bestimmten Zielorten im Körper sein oder das Schleusen von Analytmolekülen durch die winzigen Kanäle von Diagnostiksystemen im Mikrochipformat. Die Vorwärtsbewegung durch eine Flüssigkeit ist aber nicht so trivial, wie man annehmen mag. Eine mögliche Bauart für Nanomotoren, die dies beherrschen, sind Nanodrähte, die die Erzeugung ihres Treibstoffs selbst katalysieren. Es handelt sich dabei um nanoskopische Stäbchen, deren Enden aus zwei verschiedenen Metallen bestehen. Anders als makroskopische Motoren haben sie keinen Tank, sondern bewegen sich in einem Medium, das einen geeigneten Treibstoff enthält.

Die „Klassiker“ sind Gold-Platin-Nanostäbchen, die mit Wasserstoffperoxid als Treibstoff etwa 10 bis 20 µm pro Sekunde zurücklegen. Das Team um Wang hat die Nanostäbchen-Motoren nun dramatisch beschleunigt: Geschwindigkeiten oberhalb von 150 µm pro Sekunde werden erreicht, wenn die bisherige Gold-Hälfte durch ein Segment aus einer Silber-Gold-Legierung ersetzt ist. Wie funktioniert dieser Nanomotor? Das Platin-Segment katalysiert die Spaltung des Wasserstoffperoxids (H2O2) in Sauerstoff (O2) und Protonen (H+).

Es nimmt die überschüssigen Elektronen auf. Diese wandern in das Silber-Gold-Segment, wo sie die Reduktionsreaktion von H2O2 und Protonen zu Wasser anzukurbeln. Die Freisetzung von Sauerstoff und Wasser erzeugt eine kleine Strömung, die das Nanostäbchen durch die Flüssigkeit treibt, die Platin-Seite voran. „Die Silber-Gold-Legierung sorgt dafür, dass die Elektronen rascher übertragen werden,“ erklärt Wang. „Damit läuft die Zersetzung des Treibstoffs schneller ab und das Stäbchen wird entsprechend stärker beschleunigt.“ Die Geschwindigkeit der Stäbchen kann durch den Silberanteil der Legierung maßgeschneidert werden. „Treibstoffzusätze oder eine Variation des Platin-Segments werden die Stäbchen noch schneller machen,“ erwartet Wang.

Angewandte Chemie: Presseinfo 44/2008

Autor: Joseph Wang, University of California, San Diego (USA), http://nanoengineering.ucsd.edu/~joewang/

Angewandte Chemie, doi: 10.1002/ange.200803841

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Media Contact

Dr. Renate Hoer idw

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

FDmiX: Schnelle und robuste Serienproduktion von Nanopartikeln

Verkapselungstechnologie der nächsten Generation… Nukleinsäure-basierte Medikamente wie mRNA-Impfstoffe bieten ein enormes Potenzial für die Medizin und eröffnen neue Therapieansätze. Damit diese Wirkstoffe gezielt in die Körperzellen transportiert werden können, müssen…

Sensor misst Sauerstoffgehalt in der Atemluft

Eine zu geringe oder zu hohe Sauerstoffsättigung im Blut kann bleibende körperliche Schäden bewirken und sogar zum Tod führen. In der Intensiv- und Unfallmedizin wird die Sauerstoffkonzentration der Patientinnen und…

Neue MRT-Technik erkennt Schlaganfälle in kürzester Zeit

Tag gegen den Schlaganfall: Forschende der Universitätsmedizin Mainz haben im Rahmen einer Studie erstmals eine KI-gestützte Magnetresonanz-Tomographie (MRT)-Methode untersucht, um akute ischämische Schlaganfälle effizienter detektieren zu können. Dabei setzten sie…

Partner & Förderer