Leuchtender Plagiatschutz

Das Farbstoffverfahren eignet sich nicht nur für den Plagiatschutz, sondern auch zur Qualitätssicherung, etwa bei Beschichtungen. Hier charakterisieren Linienverläufe gut und schlecht gehärtete Beschichtungen auf einer Funktionsfolie. (© Armin Okulla/Harald Holeczek)
Von Produktpiraterie sind längst nicht nur Konsumgüter wie Uhren oder Markenkleidung betroffen. Auch die produzierende Industrie hat mit gefälschten oder qualitativ minderwertigen Materialien zu kämpfen. Spezielle Sicherheitsmerkmale wie Wasserzeichen, Barcodes, RFID-Tags und Hologrammen kennzeichnendie Produkte und schützen sie so vor Fälschung, Diebstahl und Manipulation.
Dabei gilt: Je komplizierter eine Markierung zu imitieren ist, desto sicherer ist das System. Ein Forscherteam aus vier Fraunhofer-Instituten hat nun ein neuartiges Verfahren entwickelt, das besonders fälschungssicher ist: »Wir setzen dem gesamten Material verschiedene fluoreszierende Farbstoffe zu«, erklärt Dr. Andreas Holländer vom Fraunhofer-Institut für Angewandte Polymerforschung IAP. »Anhand der Fluoreszenz können wir spezifische Eigenschaften exakt bestimmen und dadurch erkennen, ob es sich um das Original handelt und die Qualitätsanforderungen erfüllt sind«.
Fluoreszenz kommt bei einigen organischen Farbstoffen vor: Werden diese in einem bestimmten Wellenlängenbereich bestrahlt, emittieren sie selbst Licht mit einer größeren Wellenlänge. Die Art der Leuchtkraft – also Wellenlänge und Lichtintensität – hängt dabei von den physikalischen und chemischen Eigenschaften des Materials ab, dem der Farbstoff zugesetzt wurde. Verschiedene Farbstoffe reagieren auf unterschiedliche Eigenschaften, etwa den pH-Wert oder die Viskosität. So leuchtet ein bestimmter Farbstoff beispielsweise in einem hoch vernetzten Harz stärker als in einem weniger vernetzten.
Um ein Produkt fälschungssicher zu machen, setzen die Forscher dem Material daher mehrere Farbstoffe zu. »Auf diese Weise entsteht eine individuelle Kennzeichnung, die extrem schwer zu imitieren ist«, sagt Holländer. Dank der geringen Dosierung ist es praktisch unmöglich, Art und Menge der Farbstoffzusätze zu entschlüsseln: Bereits Farbstoffkonzentrationen von wenigen ppb (parts per billion) genügen, um das Material zu markieren. Ein weiterer Vorteil: Der Plagiatschutz kann definitiv nicht entfernt werden. »Bei herkömmlichen Sicherheitsmerkmalen ließe sich die Stelle mit der Markierung theoretisch aus dem Material beseitigen. Das funktioniert bei unserer Technik nicht, da der Farbstoff im gesamten Material verteilt ist und dieses selbst ein Bestandteil der Kennzeichnung ist«, sagt Holländer. Neben dem Plagiatschutz eignet sich das Verfahren auch für eine effektive Qualitätssicherung, etwa bei Beschichtungen: Mit Hilfe verschiedener Farbstoffe lassen sich während des Produktionsprozesses sowohl die chemische Zusammensetzung, der Trocknungsgrad als auch die Dicke der Schicht kontrollieren.
Erste Praxistests hat die neue Technik bereits bestanden: Unter anderem haben die Forscher Barrierefolien für organische Leuchtdioden (OLEDs) und Photovoltaik, eine Entwicklung der Fraunhofer-Allianz Polymere Oberflächen POLO, mit Farbstoffen markiert. Das Verfahren ist also grundsätzlich einsatzbereit, muss jedoch für jedes Material angepasst werden. Eine Standardlösung wäre auch nicht im Sinne des Erfinders: »Ein Grund für die hohe Sicherheit unserer Technologie ist ja gerade, dass es nur materialspezifische Lösungen gibt«, betont Holländer.
Media Contact
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2010/06/leuchtender-plagiatsschutz.jspAlle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge

Supraleitende Nanodrähte detektieren einzelne Protein-Ionen
Nachweiseffizienz dank extremer Empfindlichkeit 1.000-fach höher als bei konventionellen Ionendetektoren. Einem internationalen Forschungsteam rund um Quantenphysiker Markus Arndt von der Universität Wien ist eine bahnbrechende Entwicklung im Bereich der Detektion…

Formationsflug im Orbit
Zwei Satelliten erfolgreich aus Kalifornien gestartet / Technische Universität Berlin setzt mit NanoFF-Projekt neue Maßstäbe in der Kleinsatellitenentwicklung. Am Freitag, den 1. Dezember 2023 sind zwei Kleinstsatelliten der TU Berlin…

HYPERRAUM.TV-Doku: Quantencomputing für Teilchenmodelle
Themenschwerpunkt Quantencomputing (Folge 2): Karl Jansen vom DESY ist Professor für Teilchenphysik. Er versucht in einem großen Projekt die Möglichkeiten des Einsatzes von Quantencomputern für die Teilchenphysik auszuloten. Es könnte…