Neue praxistaugliche Materialmodelle für die Industrie

In dem neuen Projekt von Prof. Dr. Kerstin Weinberg wird der Einfluss der Mikrostruktur auf das dynamische Materialverhalten von Elastomerschäumen untersucht.
Foto: Carsten Schmale / Universität Siegen

Am Siegener Lehrstuhl für Festkörpermechanik wird in einem neuen Forschungsprojekt das Dämpfungsverhalten von Moosgummi simuliert.

Er ist elastisch, die Oberfläche ist glatt, die Zellen im Inneren aber offen: Moosgummi. Der Schaumstoff zeichnet sich durch eine hohe Druckelastizität aus und wird häufig zur Abdichtung von Behältern oder Gehäusen genutzt. Zum innovativen Einsatz von Moosgummi bei hochtechnologischen Produkten forscht die Arbeitsgruppe von Prof. Dr.-Ing. Kerstin Weinberg am Lehrstuhl der Festkörpermechanik an der Universität Siegen.

Moosgummi ist ein gemischtzellig getriebener Gummi-Werkstoff. Solche geschäumten Elastomere finden in diversen Industriezweigen ein breites Anwendungsspektrum, wie zum Beispiel bei Dichtungs-, Wärmedämmungs- und Schallschutzsystemen. Diese Systeme erhielten im vergangenen Jahrzehnt durch computergestützte Verfahren einen enormen Entwicklungsschub. Damit stiegen aber auch die Anforderungsprofile, wobei vermehrt die Dämpfungseigenschaften in den Fokus rücken.

In einem neuen Projekt von Prof. Dr.-Ing. Kerstin Weinberg wird nun der Einfluss der Mikrostruktur auf das dynamische Materialverhalten von Elastomerschäumen systematisch untersucht. Die ‎mechanischen Eigenschaften eines geschäumten Elastomers hängen sowohl vom Matrixmaterial als auch von der Mikrostruktur ‎ab. Mit zunehmender Porosität steigt der Einfluss der Mikrostruktur auf das mechanische Deformationsverhalten. Mithilfe von experimentellen Versuchen an Elastomerproben aus der Industrie und additiv gefertigten Schaumstrukturen können Material- und Strukturparameter bestimmt werden und das Materialverhalten durch computergestützte Verfahren simuliert werden. Für Simulationen mit kommerzieller Software, die im digitalisierten Bauteil-Designprozess bei mittelständischen Unternehmen weit verbreitet sind, werden einfache Materialmodelle benötigt, welche die Realität dennoch bestmöglich abbilden. Im Falle von Moosgummi fehlt es der Industrie jedoch derzeit an diesen praxistauglichen ‎Modellen.‎ Im Rahmen des Projektes werden zwei neue Modellierungsansätze entwickelt. Abschließend werden reale Bauteil-Simulationen aus der Praxis beteiligter Unternehmen mit den Materialmodellen durchgeführt und experimentell überprüft.

Das Forschungsvorhaben der Industriellen Gemeinschaftsforschung (IGF) wird durch das Bundesministerium für Wirtschaft und Klimaschutz mit 400.000 Euro finanziert. Neben den Siegener Wissenschaftler*innen ist auch das Deutsche Institut für Kautschuktechnologie (DIK) in Hannover als zweite Forschungseinrichtung beteiligt. Eine Besonderheit von IGF-Projekten ist, dass auch kleine und mittlere Unternehmen (KMU) unmittelbar im Projekt involviert sind. Dies ermöglicht einen einfachen Zugang der KMU zu praxisorientierter Forschung und stärkt die Wettbewerbsfähigkeit des Mittelstands.

Wissenschaftliche Ansprechpartner:

Prof. Dr.-Ing. Weinberg

Prof. Dr.-Ing. Kerstin Weinber
kerstin.weinberg@uni-siegen.de
Tel.: 0271 740 4641 oder 0271 740 2225

http://www.uni-siegen.de

Media Contact

Sabine Nitz Stabsstelle für Presse, Kommunikation und Marketing

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Unerwartete Abweichungen in der Lebensdauer

Erste Beobachtung des nuklearen Zwei-Photonen-Zerfalls in nackten Atomkernen am GSI/FAIR-Speicherring ESR. Erstmals gelang es einem internationalen Forschungsteam unter Leitung von GSI/FAIR in Darmstadt, des Institut de recherche sur les lois…

Der Magnet-Trick: Neue Erfindung lässt Vibrationen verschwinden

Eine völlig neue Methode, störende Vibrationen zu dämpfen, patentierte die TU Wien. Für Präzisionsgeräte wie astronomische Hochleistungsteleskope ist das ein wichtiger Schritt. Wenn alles wackelt, ist Präzision meist unmöglich –…

Auf dem Weg zur Entdeckung einer zweiten Erde

Ingenieure und Wissenschaftler des Max-Planck-Instituts für Astronomie (MPIA) haben unter der Leitung von Oliver Krause zentrale optische Elemente für das Coronagraph Instrument (CGI) des Roman Space Telescope entwickelt und an…

Partner & Förderer