Kohlenstoff-Nanoröhren stechen Metalle aus

Forscher an der University of Illionois haben die Eigenschaften metallischer Kohlenstoff-Nanoröhren genauer untersucht, um ihre Eignung für Anwendungen in Mikrochips und anderer Elektronik besser zu verstehen.

„Unsere Arbeit zeigt, dass Kohlenstoff-Nanoröhren in ihrer metallischen Form andere thermische und elektrische Eigenschaften haben als normale Leiter“, sagt Jean-Pierre Leburton, Professor für Elektro- und Computertechnik in Illinois. Die Temperatur beeinflusst die Stromleitung nicht, so die Erkenntnis. Das ist gerade für Mikrochips sehr interessant, da dort unerwünschte Effekte reduziert werden könnten.

Bei metallischen Kohlenstoff-Nanoröhren tritt der thermoelektrische Effekt nicht auf. „Das ist eine fundamentale Eigenschaft von Leitern, dass ein Strom aufgrund einer Temperaturdifferenz zwischen zwei Kontaktpunkten fließt“, erläutert Leburton. Strom fließt durch Temperaturunterschiede also praktisch so wie aufgrund einer angelegten Spannung. Bei den Nanoröhren ist das anders. „Das ist ein Metall, das sich nicht wie ein normales Metall verhält“, meint daher Leburton. Temperaturunterschiede führen nämlich nicht dazu, dass Strom fließt. Das ist dem Wissenschaftler zufolge eine fundamentale Eigenschaft der metallischen Kohlenstoff-Nanoröhren, die in ihrer speziellen Struktur begründet liegt.

Die Forscher haben beobachtet, dass sich in den metallischen Kohlenstoff-Nanoröhren im Gegensatz zu normalen Leitern alle Elektronen gleich schnell bewegen. Außerdem bleibt die Elektronen-Geschwindigkeit durch Erhitzen unbeeinflusst. „Das bedeutet, dass die metallischen Kohlenstoff-Nanoröhren geringeren Widerstand bieten als andere metallische Leiter“, betont Leburton. Das macht sie insbesondere für Mikrochips interessant. „In hochdichten Schaltkreisen würden Verbindungen aus metallischen Kohlenstoff-Nanoröhren hitzebedingte Verluste reduzieren und weniger Kühlung erfordern als Kupfer-Nanodrähte“, erklärt der Wissenschaftler.

Die Arbeit des Teams aus Illinois baut auf frühere theoretische Überlegungen der Forscher auf und passt zu theoretischen Vorhersagen, die im Vorjahr am Rensselaer Polytechnic Institute gemacht wurden (pressetext berichtete: http://pte.at/pte.mc?pte=080315009). Das bessere Verständnis der ungewöhnlichen Leiteigenschaften soll helfen, diese auch wirklich in der Praxis nutzbar zu machen.

Media Contact

Thomas Pichler pressetext.austria

Weitere Informationen:

http://www.illinois.edu

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Experiment öffnet Tür für Millionen von Qubits auf einem Chip

Forschenden der Universität Basel und des NCCR SPIN ist es erstmals gelungen, eine kontrollierbare Wechselwirkung zwischen zwei Lochspin-Qubits in einem herkömmlichen Silizium-Transistor zu realisieren. Diese Entwicklung eröffnet die Möglichkeit, Millionen…

Stofftrennung trifft auf Energiewende

Trennkolonnen dienen der Separation von unterschiedlichsten Stoffgemischen in der chemischen Industrie. Die steigende Nutzung erneuerbarer Energiequellen bringt nun jedoch neue Anforderungen für einen flexibleren Betrieb mit sich. Im Projekt ColTray…

Kreuzfahrtschiff als Datensammler

Helmholtz-Innovationsplattform und HX Hurtigruten Expeditions erproben neue Wege in der Ozeanbeobachtung. Wissenschaftliche Forschung nicht nur von speziellen Forschungsschiffen aus zu betreiben, sondern auch von nicht-wissenschaftlichen Schiffen und marinen Infrastrukturen –…

Partner & Förderer