Student der TUM verbessert Computersimulation für Autoindustrie: Spannungen in Stahl gegossen

Die Metalle, die wie Ringe umeinander herum gelegt werden, dehnen sich beim Abkühlen nach dem Gießen unterschiedlich aus. Es kommt zu Spannungen zwischen den beiden Stoffen. Eine solche Verbundgussform aus den beiden Metallen Aluminium und Stahl hat zum ersten Mal Uwe Wasmuth an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) in Garching mit Neutronen in-situ während des Abkühlens untersucht.

Mit seinen Ergebnissen begeistert der Doktorand am Lehrstuhl für Umformtechnik und Gießereiwesen der Technischen Universität München (TUM) von Prof. Dr. Hartmut Hoffmann auch die Industrie: Wasmuth konnte zeigen, dass ein Computerprogramm, das die Spannungen in Werkstücken aus zwei Metallen simuliert, einen wichtigen Faktor nicht berücksichtigt.

„Das Programm hat die Spannungen drei Mal höher berechnet, als sie dann tatsächlich waren“, sagt der gebürtige Rheinland-Pfälzer. Denn die Simulation lässt außer Acht, dass der Aluminiumring in Wasmuths Versuchszylinder sich durch Kriechprozesse noch ein wenig an den härteren und sich geringer zusammenziehenden Stahlkern anpasst.

Die Spannungen ermittelte der Doktorand am Instrument Stress-Spec im FRM II an einem Werkstück, das aus zwei in der Industrie verwendeten Aluminium- und Stahllegierungen besteht. Um den bereits fertigen Stahlkern goss er das 710 °C heiße Aluminium. Neutronen, die auf die Atome der Alu- und Stahllegierungen trafen, maßen die Dehnung beim Abkühlen im Atomgitter und ließen so völlig zerstörungsfrei Rückschlüsse auf die Spannung im gesamten Werkstück zu.

Wasmuth beobachtete mit Hilfe des Stress-Spec, dass Spannungen, die einer Last von bis zu 20 Kilogramm pro Quadratmillimeter entsprechen, erst ab einer Abkühl-Temperatur von 350 °C auftraten. „Das Aluminium zieht sich beim Abkühlen doppelt so stark zusammen wie der Stahl“, erklärt der 30-Jährige die Ursache der Spannungen. Sichtbar werden diese enormen Kräfte lediglich durch wenige Hundertstel Millimeter, um die sich die Stahlhülse beim Abkühlen verformt.

Der Gießereiindustrie hat Uwe Wasmuth die Ergebnisse seiner Neutronenmessungen am FRM II schon mehrfach vorgestellt. Nun ist das Interesse groß, ein verallgemeinertes Computer-Modell für den Kriechprozess zu finden, der die Spannungen zwischen den Metallen abschwächt. Denn nur mit genauen Computer-Simulationen, die auch temperaturabhängige Kriechprozesse berücksichtigen, lassen sich die Spannungen in Werkstücken exakt vorhersagen und somit Risse vermeiden.

Der Wissenschaftliche Direktor der Neutronenquelle, Prof. Dr. Winfried Petry, und Zweitprüfer von Wasmuth ist begeistert von der praxisorientierten Doktorarbeit: „Das ist ein sehr schönes Beispiel dafür, dass es selbst für ein so großes Bauteil wie einen Zylinderblock darauf ankommt, wie die einzelnen Atome sich anordnen. Und es belegt den Standortvorteil Deutschland: Wo sonst gibt es solch exzellente Forschungsmöglichkeiten für unsere Industrie?“

Uwe Wasmuth hat mit Hilfe eines Sonderparagraphen in der TUM-Promotionsordnung seine Doktorarbeit begonnen. Seit 2001 bietet die TUM den zehn Prozent besten Fachhochschulabsolventen ihres Faches die Möglichkeit einer Doktorarbeit an. Seitdem streben immer mehr Kandidaten den Doktorgrad an der TUM an. Sie kommen aus dem gesamten Bundesgebiet. Nach seinem überdurchschnittlich guten Fachhochschulabschluss an der FH Aachen musste Wasmuth an der TUM nur noch ein paar Prüfungen nachholen, um zur Doktorarbeit zugelassen zu werden.

Wasmuth beantragt nun Förderungen der Deutschen Forschungsgemeinschaft (DFG), um ein Nachfolgeprojekt am TUM-Lehrstuhl für Umformtechnik und Gießereiwesen sowie an der Neutronenquelle FRM II für seine Verbundgussforschungen zu finanzieren. Dieses soll mehrere, verschiedene Verbundwerkstücke mit Neutronen untersuchen, um die Computer-Simulation für Eigenspannungen auf breitere Füße zu stellen und noch zu verfeinern.

Ansprechpartner:

Dipl.-Ing. (FH) Uwe Wasmuth
Lehrstuhl für Umformtechnik und Gießereiwesen
Technische Universität München
Walther-Meißner-Straße
85747 Garching
Tel: +49.89.289.14539
Email: uw@utg.de
Andrea Voit
Pressereferentin
Technische Universität München
Forschungs-Neutronenquelle FRM II
Lichtenbergstr. 1
85748 Garching
Tel: +49.89.289.121 41
Fax: +49.89.289.14 911
Email: andrea.voit@frm2.tum.de

Media Contact

Dr. Ulrich Marsch idw

Weitere Informationen:

http://portal.mytum.de/welcome

Alle Nachrichten aus der Kategorie: Automotive

Die wissenschaftliche Automobilforschung untersucht Bereiche des Automobilbaues inklusive Kfz-Teile und -Zubehör als auch die Umweltrelevanz und Sicherheit der Produkte und Produktionsanlagen sowie Produktionsprozesse.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automobil-Brennstoffzellen, Hybridtechnik, energiesparende Automobile, Russpartikelfilter, Motortechnik, Bremstechnik, Fahrsicherheit und Assistenzsysteme.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Theoretische Physik: Modellierung zeigt, welche Quantensysteme sich für Quantensimulationen eignen

Eine gemeinsame Forschungsgruppe um Prof. Jens Eisert von der Freien Universität Berlin und des Helmholtz-Zentrum Berlin (HZB) hat einen Weg aufgezeigt, um die quantenphysikalischen Eigenschaften komplexer Festkörpersysteme zu simulieren. Und…

Rotation eines Moleküls als „innere Uhr“

Mit einer neuen Methode haben Physiker des Heidelberger Max-Planck-Instituts für Kernphysik die ultraschnelle Fragmentation von Wasserstoffmolekülen in intensiven Laserfeldern detailliert untersucht. Dabei nutzten sie die durch einen Laserpuls angestoßene Rotation…

Auf dem Weg zur fischfreundlichen Wasserkraft

In dem europaweiten Projekt „FIThydro“ unter Leitung der Technischen Universität München (TUM) haben Forscherinnen und Forscher in Zusammenarbeit mit Industriepartnern bestehende Wasserkraftwerke untersucht. Diese Ergebnisse nutzten sie, um neue Methoden…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close