Nanoblitzen auf der Spur

Dieses Szenario spielt sich nicht am Himmel ab, sondern in unserem Alltag. Nanoblitze – mikroskopisch klein – begegnen uns bei Schaltern aller Art. Man kennt sie als Licht- oder Geräteschalter, als Leitungsschutzschalter in Wohnungen und Gebäuden, als Relais zur gleichzeitigen Schaltung von mehreren Stromkreisen in Verkehrsmitteln und Maschinen sowie als Hochspannungsschutzschalter für höchste Beanspruchungen. Alle diese Bauteile haben eine gemeinsame Grundeinheit – den Schaltkontakt.

Bei jedem Schaltvorgang entsteht ein Lichtbogen zwischen den Kontakten, ein Blitz. Vergleicht man die Ströme mit einem Atmosphärenblitz (~ 20.000 A), so kann man erkennen, dass extreme Kräfte auf die Kontakte wirken. Je nach dem wie oft diese Blitze beim Ein- und Ausschalten erzeugt werden, kann das Material erheblichen Schaden nehmen. Elektroerosion nennt man diesen Prozess, mit dem sich Saarbrücker Werkstoffwissenschaftler zusammen mit Partnern aus der Industrie beschäftigen.

Doch nicht nur die Elektroerosion verursacht Materialschäden, auch mechanische Belastungen, wie zum Beispiel Erschütterungen oder Reibungen, denen Schalter unter Umständen ausgesetzt sind, schädigen das Material zusätzlich. Die Folge: Die Funktion der Schalter und Kontakte ist nicht mehr gewährleistet und damit auch nicht mehr die Zuverlässigkeit elektrischer Geräte.

Um die Schädigungen am Material zu verringern, bestehen heutige Kontaktwerkstoffe zu 80 Prozent aus Silber. Ziel ist es, optimierte Werkstoffe zu entwickeln, in dem man dem Silber andere Kontaktwerkstoffe beimischt, um so den Verbrauch von Edelmetallen zu verringern und gleichzeitig die Widerstandsfähigkeit der Kontakte und Schalter zu steigern und die Lebensdauer zu erhöhen.

Hier setzen die Wissenschaftler am Lehrstuhl für Funktionswerkstoffe der Universität des Saarlandes an, deren Aufgabe in der 3D-Werkstoffanalyse und der Charakterisierung der Kontaktwerkstoffe besteht sowie in der Untersuchung der vom Lichtbogen geschädigten Bereiche. Das dort verfügbare sogenannte Nanolab ermöglicht es, die Mikrostruktur der Werkstoffe bis in den Nanometerbereich in drei Dimensionen zu untersuchen und die in der Regel sehr kleinen Schädigungsbereiche zielgenau zu präparieren, zu analysieren und zu charakterisieren. Auf diese Weise erlangt man ein detailliertes Verständnis von Schädigungsmechanismen durch Lichtbögen und der Auswirkungen unterschiedlicher Stoffe, ihrer Größe und ihrer Verteilungen auf den Kontaktwerkstoff. Daraus lassen sich Modelle für die großtechnische Produktion ableiten und in die Wirtschaft überführen.

Kontakt:
Herr Dr. Flavio Soldera
Herr Dipl.-Ing. Christian Selzner
Lehrstuhl für Funktionswerkstoffe
Universität des Saarlandes
Im Stadtwald
66123 Saarbrücken
Tel. (06 81) 3 02-34 38
E-Mail: f.soldera@matsci.uni-sb.de

Media Contact

Helga Hansen Innovationseinblicke Saarland

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue Erkenntnisse über unser Immunsystem

Bcl6 wichtig für Bildung bestimmter dendritischer Zellen. Dendritische Zellen nehmen wichtige Funktionen als Weichensteller unseres Immunsystems ein. Was ihre Heterogenität und funktionelle Spezialisierung bestimmt, ist allerdings nach wie vor nicht…

KI-Studie ist erschienen: 5 Kernthesen zu KI und AI-Readiness in HR

Der Think Tank Learning & Development der Zukunft Personal hat eine umfangreiche Studie zu Künstlicher Intelligenz durchgeführt und aus dieser Basis ein Whitepaper erstellt. Dabei fallen 5 Kernthesen ins Gewicht:…

Wolken bedecken die Nachtseite des heißen Exoplaneten WASP-43b

Ein Forschungsteam, darunter Forschende des MPIA, hat mit Hilfe des Weltraumteleskops James Webb eine Temperaturkarte des heißen Gasriesen-Exoplaneten WASP-43b erstellt. Der nahe gelegene Mutterstern beleuchtet ständig eine Hälfte des Planeten…

Partner & Förderer