Vollständige Oberflächenstruktur des Graphits abgebildet

Forscher aus Augsburg und Stanford berichten in PNAS über neue Technik, mit der sie das bislang „verborgene“ Atom sichtbar machen

Wissenschaftler der Universität Augsburg und der Stanford Universität in Kalifornien haben das bislang „verborgene“ Atom in der Oberfläche von Graphit abgebildet. Stefan Hembacher und Kollegen berichten in Artikel 03-4173 der „Proceedings of the National Academy of Sciences of the United States of America“ (PNAS), dass sie mit ihrer neuen Technik erstmals alle Kohlenstoffatome innerhalb des Molekülbausteins, der sich milliardenfach fortgesetzt zu einem Graphitkristall verbindet, abbilden konnten.

Demgegenüber „sahen“ frühere Abbildungstechniken nur jedes zweite Oberflächenatom des Graphits. Graphit ist in vielen Alltagsprodukten enthalten, wie Bleistiften, Schmiermitteln und Autoreifen. Für die Nanowissenschaften ist Graphit aus vielen Gründen wichtig – der erste Kontakt zur Welt einzelner Atome geht für die meisten Nanoforscher über die Abbildung von Graphit mit einem Rastertunnelmikroskop. Das Rastertunnelmikroskop zeigt aber nur die Hälfte der Atome.

Bei den neuen Experimenten wurden das kombinierte Rastertunnel- und Rasterkraftmikroskop und die Graphitprobe auf etwa 5 Grad über dem absoluten Nullpunkt mit flüssigem Helium gekühlt, um das thermische und elektronische Rauschen zu minimieren. Dieses Mikroskop wurde am EKM des Instituts für Physik der Universität Augsburg entwickelt; es ist nicht zuletzt aufgrund der tiefen Arbeitstemperaturen (-268°C) weltweit einzigartig. Der ebenfalls in Augsburg entwickelte Kraftsensor besteht aus einem Schwingquarz, wie er in gewöhnlichen Armbanduhren verwendet wird. Ein Arm der Schwing-quarzgabel trägt eine scharfe Spitze aus Wolfram, wird in Schwingungen versetzt und über die Gra-phitoberfläche geführt. Das Messsignal des Rastertunnelmikroskops, der Tunnelstrom, kann aufgrund der elektronischen Struktur des Graphits nur durch jedes zweite Graphitatom fließen. Die Schwin-gungsfrequenz der Spitze dagegen ändert sich durch die auftretenden Abstoßungskräfte über jedem Atom der Oberfläche.

Wie Mark C. Hersam und Yip-Wah Chung von der Northwestern University in Chicago in einem begleitenden Kommentar betonen, könnte die neue Technik auch für die Abbildung anderer weicher organischer und biologischer Moleküle, welche sich mit gewöhnlichen Rastertunnelmikroskopen nur schwierig abbilden lassen hilfreich sein.

Bild 1: Graphit ist in vielen Alltagsprodukten, wie z.B. Bleistiften enthalten. Im Graphit bilden die Koh-lenstoffatome hexagonale Ringe. Mit den bislang verwendeten Rastertunnelmikroskopen konnte aber nur jedes zweite Oberflächenatom sichtbar gemacht werden. Das Bild, aufgenommen mit einem neuen, sehr empfindlichen Rasterkraftmikroskop, zeigt erstmals die vollständige hexagonale Struktur der Gra-phitoberfläche.

Bild 2: Rasterkraftmikroskop für tiefe Temperaturen. Im Vordergrund ist das Gefäß für das Kühlmittel (flüssiges Helium, Siedepunkt -269°C) zu sehen. Darüber die Ultrahochvakuumkammer für das Kraftmikroskop.

Kontakt:

Priv. Doz. Dr. Franz Giessibl
c/o Lehrstuhl für Experimentalphysik VI / EKM
Universität Augsburg
D-86135 Augsburg
Telefon +49 821 – 598-3675
Fax +49 821 – 598-3652
E-mail: franz.giessibl@physik.uni-augsburg.de

Media Contact

Klaus P. Prem idw

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Digitale Lösungen für betreute Wohnformen

Projekt soll Potenziale der Digitalisierung in der Betreuung von chronisch psychisch kranken und seelisch behinderten Menschen aufzeigen. Kann durch digitale Lösungen eine Verbesserung der Versorgungsqualität im betreuten Wohnen geschaffen werden?…

3-D-Laser-Nanodrucker als kleines Tischgerät

Die Laser in heutigen Laserdruckern für Papierausdrucke sind winzig klein. Bei 3-D-Laserdruckern, die dreidimensionale Mikro- und Nanostrukturen drucken, sind dagegen bisher große und kostspielige Lasersysteme notwendig. Forschende am Karlsruher Institut…

Polymere mit Helix-Blöcken

Domänenbildung bei supramolekularen Polymeren durch Bestrahlung mit UV-Licht. Künstliche Polymere sind die Grundstoffe aller Kunststoffe, und haben zumeist keinen geordneten Aufbau (im Gegensatz zu Biopolymeren wie Proteinen). Ein Forschungsteam hat…

Partner & Förderer