Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Druckbare Leuchtpartikel ermöglichen kostengünstige und gebogene Leuchtflächen

25.03.2015

Forscher des INM – Leibniz-Institut für Neue Materialien haben eine neue Methode entwickelt, die Elektrolumineszenz auf großen, gebogenen Oberflächen kostengünstig ermöglicht: Dabei werden sowohl die Phosphore als lichtemittierende Schicht als auch alle anderen Bestandteile über nasschemische, druckbare Verfahren erzeugt.

Lichtemittierende Dioden (LEDs) sind heute gebräuchliche Beleuchtungseinheiten. Diese Halbleiterbauelemente kommen in Lampen, Signalen, Schildern oder Anzeigen zum Einsatz. In ihren Verwandten, den OLEDs, sind organische, halbleitende, lichtemittierende Materialien in dünnen Schichten verbaut. Dies ermöglicht im Prinzip eine Anwendung auf gewölbten Oberflächen. Die Verwendung von OLEDs zur großflächigen Beleuchtung ist zurzeit aufgrund ihrer niedrigen Effizienz und Lebensdauer kostenintensiv.


Elektrolumineszierende Schichten

Quelle: Copyright INM; frei in Zusammenhang mit dieser Meldung.

Eine Alternative ist die Elektrolumineszenz. Dabei werden spezielle Nanopartikel, sogenannte Phosphore, in einem elektrischen Feld zum Leuchten angeregt. Nun haben Forscher des INM – Leibniz-Institut für Neue Materialien eine neue Methode entwickelt, die Elektrolumineszenz auf großen, gebogenen Oberflächen kostengünstig ermöglicht: Dabei werden sowohl die Phosphore als lichtemittierende Schicht als auch alle anderen Bestandteile über nasschemische, druckbare Verfahren erzeugt.

Diese Ergebnisse zeigen die Entwickler auf der diesjährigen Hannover Messe am Stand B46 in Halle 2 im Rahmen der Leitmesse Research & Technology vom 13. bis 17. April.

„Für die Bearbeitung genügen Temperaturen unter 200 Grad Celsius. Damit können wir alle benötigten Teil-Schichten auch auf Folien oder andere flexible Substrate aufbringen“, erklärt Peter William de Oliveira, Leiter des Programmbereichs Optische Materialien. So ließen sich „Leuchtflächen“ sehr kostengünstig und auch in großen Formaten herstellen.

Die Leuchteinheit besteht aus zwei elektrisch leitenden Schichten, zwischen denen sich die Licht emittierenden Partikel in einer dielektrischen, isolierenden Binderschicht befinden. Mindestens eine der leitenden Schichten ist leitfähig und transparent zugleich, meist basierend auf ITO-Nanopartikeln.

Durch die Einbettung in die isolierende Schicht wird die aufgenommene Energie effizient in Licht umgesetzt; eine nennenswerte Erwärmung der Leuchtelemente findet also nicht statt. Durch Anlegen einer Wechselspannung erfolgt dann die Lichtemission aus der elektrolumineszierenden Schicht. „Als Leuchtpartikel betten wir funktionalisierte Zinksulfid-Nanopartikel als Phosphore in die Binderschicht ein“, erklärt de Oliveira, „diese sind mit Kupfer oder Mangan dotiert. Damit lassen sich momentan grünes und blaugrünes Licht erzeugen.“

Die am INM entwickelten elektrolumineszierenden Lichtfolien lassen sich direkt an die übliche Netzspannung von 230 Volt anschließen. Gleichrichter, Vorschaltkondensatoren oder andere Schalteinheiten, die die Spannung erst anpassen, entfallen.

Zurzeit arbeiten die Forscher an der weiteren Funktionalisierung der Phosphore-Nanopartikel. „Unser Ziel ist die Erzeugung weißen Lichtes durch eine veränderte Dotierung oder das Einbringen von farbigen Pigmenten in die Leuchtschicht“, sagt der Physiker de Oliveira. Gleichzeitig wollen die Entwickler die Materialien so verändern, dass die Lichtfolien auch bei niedrigerer Netzspannung eingesetzt werden können.

Ihre Ansprechpartner am Stand B46 in Halle 2:
Dr. Thomas Müller
Dr. Mario Quilitz

Ihr Experte am INM:
Dr. Peter William de Oliveira
INM – Leibniz-Institut für Neue Materialien
Leiter Optische Materialien
Tel: 0681-9300-148
peter.oliveira@inm-gmbh.de

Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen? Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für medizinische Oberflächen, Neue Oberflächenmaterialien für tribologische Systeme sowie Nano-Sicherheit und Nano-Bio. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen. Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 210 Mitarbeiter.

Weitere Informationen:

http://www.inm-gmbh.de
http://www.hannovermesse.de/aussteller/leibniz-institut-fuer-neue-materialien/E1...

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen
26.04.2017 | Rittal GmbH & Co. KG

nachricht Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen
25.04.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften