Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abwärme sinnvoll nutzen – ECEMP auf der Hannover Messe 2013

04.03.2013
Bei vielen Industrie- und Verbrennungsprozesse entsteht Abwärme, die ungenutzt an die Umwelt abgegeben wird.

An anderer Stelle hingegen, zur Aktivierung der Prozesse beispielsweise, wird Wärme benötigt, die zusätzlich zugeführt werden muss. Die Wissenschaftler im ECEMP-Teilprojekt CerHeatPipe, um Prof. Michael Beckmann, vom Institut für Energietechnik der TU Dresden, haben sogenannte Hochtemperatur-Wärmeübertrager entwickelt, mit denen es möglich ist, die Abwärme umzuleiten und für den Prozess nutzbar zu machen. Damit könnten große Energiemengen eingespart, CO2-Emissionen reduziert und somit die Effizienz von Industrie- und Kraftwerksprozessen deutlich gesteigert werden. Die Wissenschaftler stellen ihr Projekt vom 08. bis zum 12. April 2013 auf der Hannover Messe, Halle 2, Stand A32 vor.

Mit Wärmerohren, auch Heatpipes genannt, lässt sich sehr effektiv Wärme von einem Ort zum anderen transportieren. Heatpipes sind geschlossene, mit einer kleinen Menge Flüssigkeit gefüllte Rohre. Sie nutzen den Effekt, dass Moleküle in einer Flüssigkeit Arbeit verrichten müssen, wenn sie sich aus dem Flüssigkeitsverband lösen und in den gasförmigen Zustand übergehen. Die dafür nötige Energie erhalten sie aus der Umgebung, indem sie dieser Wärme entziehen, sie also abkühlen. Umgekehrt wird diese Energie beim Kondensieren wieder frei. Die Umgebung erwärmt sich.

Ein Ende des Wärmerohres befindet sich in einer Region mit höherer, das andere in einer mit niedrigerer Temperatur. Wenn am wärmeren Ende im Inneren des Wärmerohres Flüssigkeit verdampft, sorgt die Verdampfung in diesem Bereich für Abkühlung. Der Dampf strömt in Richtung der kälteren Region, wo er kondensiert und seine aufgenommene Wärme wieder an seine Umgebung abgibt. Das Kondensat fließt zurück und kann abermals verdampfen. Kombiniert man Hunderte bis Tausende solcher Wärmerohre zu einem sogenannten Wärmerohr-Wärmeübertrager, lässt sich die transportierte Wärmemenge noch einmal um ein Vielfaches steigern und für Industrieprozesse nutzbar machen.

Zwar gibt es verschiedene Anwendungen für metallische Wärmerohre, doch die Wissenschaftler im ECEMP-Teilprojekt CerHeatPipe haben vor allem den Einsatz von Wärmeübertragern im Abwärmestrom von Kraftwerks- und Industrieprozessen auf besonders hohem Temperaturniveau im Blick. Kommen dann noch – wie es vor allem bei der Verwendung alternativer Brennstoffe wie Biomasse oder Reststoffe der Fall ist – aggressive Abgasatmosphären hinzu, stoßen metallische Wärmerohre schnell an ihre Grenzen. Auf Basis eines Materialscreenings fertigen die Forscher daher ihre Hochtemperaturwärmerohre aus einer Hochleistungskeramik und haben ein für den anvisierten Anwendungsbereich spezielles Lot entwickelt. So sind die Heatpipes für den Einsatz bei Temperaturen von über 1000 Grad Celsius und aggressiven Umgebungen geeignet. Ein von ihnen aufgebauter Wärmerohrversuchsstand mit zwei schwenkbaren Öfen dient den Wissenschaftlern zur Überprüfung und Anpassung ihrer Berechnungsmodelle.

Für eine erste Erprobung der keramischen Wärmerohrwärmeübertrager in industriellen Anwendungen sind Biomasseverbrennungs- und -vergasungsprozesse vorgesehen. Weitere großtechnische Anwendungsmöglichkeiten sehen die Forscher in der Abwärmenutzung aus Gichtgas- und Kohleverbrennung sowie beim Iod-Schwefelprozess zur Gewinnung von Wassserstoff als Energiespeicher. Das Interesse an der Anwendung der Wärmerohrtechnologie seitens der Industrie ist groß. Dies machen auch einige enge Kontakte insbesondere mit verschiedenen sächsischen KmUs deutlich.

ECEMP – Vom Atom zum komplexen Bauteil

Die Wissenschaftler im Spitzentechnologiecluster„ECEMP – European Centre for Emerging Materials and Processes Dresden“ entwickeln ressourcenschonende Werk-stoffe, Technologien und Prozesse für die drei Zukunftsfelder Energietechnik, Umwelttechnik und Leichtbau. Dabei bündeln sie die Kompetenzen in allen Materialklassen (Metalle, Kunststoffe, Naturstoffe und Keramik) und der gesamten Wertschöpfungskette (Materialdesign (CMS), Entwicklung, Herstellung, Verarbeitung und Anwendung von Bauteilen). Das ECEMP umfasst 14 Teilprojekte, an denen 40 Professuren aus 23 Instituten der TU Dresden, der TU Freiberg, der HTW Dresden und der Wissenschaftsorganisationen HG, FhG, MPG und LG beteiligt sind. Das ECEMP wird finanziert aus Mitteln der Europäischen Union und des Freistaates Sachsen (EFRE – Europäischer Fonds für regionale Entwicklung).
http://ecemp.tu-dresden.de

ECEMP-Sprecher:
Prof. Dr.-Ing. habil. Prof. E. h. Dr. h. c. Werner A. Hufenbach
TU Dresden
Institut für Leichtbau und Kunststofftechnik
ilk@ilk.mw.tu-dresden.de
Tel.: +49 (0)351 463 38142
Fax: +49 (0)351 463 38143

Informationen für Journalisten:
Dr. Silke Ottow
TU Dresden
ECEMP
silke.ottow@ecemp.tu-dresden.de
Tel.: +49 (0)351 463 38447
Fax: +49 (0)351 463 38449

Kim-Astrid Magister | Technische Universität Dresden
Weitere Informationen:
http://ecemp.tu-dresden.de

Weitere Berichte zu: Abwärme Bauteile ECEMP Flüssigkeit Heatpipes Leichtbau Prozess Temperatur Wärme Wärmerohre

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Rittal mit neuer Push-in-Leiteranschlussklemme - Kontakte im Handumdrehen
26.04.2017 | Rittal GmbH & Co. KG

nachricht Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen
25.04.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie