Analytik von Nanomaterialien und neue Anwendungsideen für Nanoteilchen

In den letzten Jahren rückt die Herstellung und Anwendung von Nanomaterialien immer stärker in das Zentrum von interdisziplinären Forschungsansätzen aus Chemie, Physik, Ingenieur- und Biowissenschaften. Auf der Jahrestagung Chemie 2003 der Gesellschaft Deutscher Chemiker (GDCh) im Oktober in München werden die Nanotechnologien insbesondere unter dem Aspekt der Analytik von Nanomaterialien behandelt.

Die Verkleinerung der Strukturen auf integrierten Schaltkreisen schärfte den Blick für die vielfältigen technologischen Möglichkeiten, die definiert aufgebaute Nanostrukturen eröffnen. Bereits genutzt werden optische Eigenschaften wie die Farbe von Luminiszenzemissionen, die sich in definierter Weise über die Größe der Teilchen einstellen läßt. Magnetische Nanopartikel sind bereits heute für magnetische Aufzeichnungsmedien mit hoher Speicherdichte gesucht. Nanopartikel spielen auch in der heterogenen Katalyse eine Rolle: Obwohl Kolloide oder Metallcluster in der heterogenen Katalyse seit langem bekannt sind und intensiv genutzt werden, haben die neuen Anwendungen eine ganze Reihe neuer Herstellungsverfahren für nanometergroße Strukturen mit möglichst enger Größenverteilung aus unterschiedlicher Stoffe stimuliert.

Die Charakterisierung der Größe von Nanopartikeln gelingt mit verschiedenen mikroskopischen Verfahren wie der
Transmissionselektronenmikroskopie. Die Analyse der exakten Zusammensetzung und die funktionale Charakterisierung einzelner Nanostrukturen stellt hingegen für Chemiker und Physiker immer noch eine Herausforderung dar. Mit neuen Ansätzen zur Charakterisierung von Nanostrukturen lässt sich deren chemische Zusammensetzung und deren chemisches Verhalten aufklären. Solche Informationen sind eine Voraussetzung für eine gezielte Optimierung der Herstellung von Nanopartikeln und für neue Anwendungen.

Am Beispiel von Filmen aus nanokristallinem Anatas (Titandioxid) wird auf der Tagung erläutert, wie der kombinierte Einsatz von Rasterkraftmikroskopie, Transmissionselektronenmikroskopie und Sekundärionenmassenspektroskopie zur Aufklärung der Kristallstruktur und der Elementzusammensetzung eingesetzt werden kann. Bei Nanostrukturen aus organischem Material sind neben der Elementzusammensetzung molekulare Strukturinformationen wichtig, ihre Gewinnung ist jedoch noch wesentlich schwieriger als die Untersuchung anorganischer Nanopartikel aus Metallen oder anorganischen Halbleitern. Es wird berichtet, wie Licht so an Nanoteilchen auf Oberflächen herangeführt werden kann, dass sich entweder charakteristische Molekülspektren aufzeichnen lassen oder mit der Energie des eingestrahlten Lichtes die Moleküle verdampft und nachfolgend in einem Massenspektrometer untersucht werden können. Es konnten Selbstorganisationsprozesse von organischen Molekülen auf technologisch wichtigen Oberflächen nachgewiesen werden. Diese Moleküle bilden auf den Oberflächen dünne Filme, die deren Eigenschaften dramatisch verändern können. Für eine technische Anwendung sind Kenntnisse über die Wachstumsmechanismen dieser Filme von Nöten, die sich mit einem Rasterkraftmikroskop gewinnen lassen. Dabei tastet eine feine Meßspitze die Probe mechanisch ab. Durch geschickte Gestaltung des Abtastvorgangs kann von den beobachteten mikromechanischen Eigenschaften auf die molekularen Zusammensetzungen geschlossen werden. In ähnliche Messspitzen konnten zusätzlich weitere Geräte eines chemischen Labors in miniaturisierter Bauweise integriert werden. So können mit einer integrierten pH-Sonde Korrosionsvorgänge untersucht werden.

Natürlich profitieren auch die analytischen Messmethoden vom Einsatz der Nanomaterialien. Diese ermöglichen empfindlichere Detektionsverfahren, z.B. verbesserte Sensoren. Sowohl elektrochemische Nachweisverfahren als auch Warnsensoren für brennbare Gase können durch den Einsatz von nanostrukturierten Metallen verbesserte Empfindlichkeiten erreichen. Nanoteilchen können als Markierungsschilder für biochemische Assays eingesetzt werden, die mit einem Rasterkraftmikroskop ausgelesen werden. Dadurch gelingen sehr viele verschiedene Tests auf engstem Raum.

Durch Anbindung von organischen Molekülen an der Oberfläche von Hartstoffnanopartikeln lassen sich diese vor Korrosion oder Aggregation schützen. Wenn die organischen Moleküle auf der Oberfläche von Metallnanopartikeln selektive Erkennungsreaktionen eingehen, lassen sich aus unterschiedlichen Chargen selbstassemblierende Netzwerke der Nanoteilchen aufbauen. Mit solchen selbstorganisierenden Netzwerken lässt sich eine Vielfalt neuer Testsysteme aufbauen. Mit den neuen Techniken zur Markierung und Untersuchung von Nanoteilchen gelang es zu „filmen“, wie ein Virus eine Zelle infiziert. Hohle Nanopartikel kann man mit Medikameten beladen, über externe magnetische Felder manipulieren und in Zukunft vielleicht an den Wirkort bringen.

Media Contact

Dr. Renate Hoer idw

Weitere Informationen:

http://www.gdch.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wolken bedecken die Nachtseite des heißen Exoplaneten WASP-43b

Ein Forschungsteam, darunter Forschende des MPIA, hat mit Hilfe des Weltraumteleskops James Webb eine Temperaturkarte des heißen Gasriesen-Exoplaneten WASP-43b erstellt. Der nahe gelegene Mutterstern beleuchtet ständig eine Hälfte des Planeten…

Neuer Regulator des Essverhaltens identifiziert

Möglicher Ansatz zur Behandlung von Übergewicht… Die rapide ansteigende Zahl von Personen mit Übergewicht oder Adipositas stellt weltweit ein gravierendes medizinisches Problem dar. Neben dem sich verändernden Lebensstil der Menschen…

Maschinelles Lernen optimiert Experimente mit dem Hochleistungslaser

Ein Team von internationalen Wissenschaftlerinnen und Wissenschaftlern des Lawrence Livermore National Laboratory (LLNL), des Fraunhofer-Instituts für Lasertechnik ILT und der Extreme Light Infrastructure (ELI) hat gemeinsam ein Experiment zur Optimierung…

Partner & Förderer