Künstliche Intelligenz für Green IT

Neben Systemdemonstrationen wird auch ein John Deere 6830 Premium Traktor gezeigt.

Im Auftrag des Landes Rheinland-Pfalz arbeiten Wissenschaftler des DFKI-Forschungsbereichs Wissensmanagement im Projekt IVIP an der Realisierung von Planungsinstrumenten für die Erzeugung und Logistik von Biomasse. Die Entwicklung der auf Web Services basierenden Infrastruktur erfolgt in Zusammenarbeit mit den zuständigen Beratungseinrichtungen in Rheinland-Pfalz unter Berücksichtigung bereits digitalisierter Geodaten von Bewirtschaftungsflächen und deren Bodenqualitäten. Ziel ist es, sämtliche Ertragsfaktoren in einer Wissensbasis zu verknüpfen, die als Entscheidungsunterstützung im Pflanzenbau dient.

Dazu werden zur Ertragsprognose wichtige Daten wie die geologische Zusammensetzung des Bodens, meteorologische Kennzahlen wie Niederschlag oder Sonnenstunden von den Forschern verknüpft. Raumbezogenes Fachwissen der Experten für den Pflanzenanbau wird in geeignete Regelsprachen überführt. Die so erzeugte Wissensbasis erlaubt es dem System, individuelle Beratungsfragen automatisch in Anfragen an angeschlossene Geoinformationssysteme umzusetzen und die Ergebnisse unter Berücksichtigung des Fachwissens zu bewerten und zu kombinieren.

Zur Validierung der Ertragsprognosen werden GPS-gestützte Sensordaten von Erntemaschinen des Landtechnikherstellers John Deere in diesen Informationskreislauf eingebunden. Die Ergebnisse zeigen, dass digitalisierte, aufbereitete Geoinformationen und aktuelle sensorgestützte Datenerhebungen in der landwirtschaftlichen Produktion eine erfolgversprechende Grundlage für vielfältige Prognose- und Steuerungsdienste sind. In Form individueller und zeitnaher Online-Beratung können solche Dienste in erheblichem Maße zu einer ergebnisoptimierten und umweltgerechten Erzeugung von Nahrungs- und Energieressourcen beitragen.

Vom Kooperationspartner John Deere stammt die Technik, um die Daten und Prognosen zu überprüfen. Die Landmaschinen haben neben einem Bordcomputer, dessen Sensoren z.B. Bodenbeschaffenheit und Ertragsmenge ermitteln, auch einen GPS-Sender an Bord, um jederzeit den aktuellen Standort zu ermitteln. Dadurch können die Sensordaten zielgerichtet erfasst und übermittelt werden. Die Berater erhalten so Rückmeldung über die Qualität ihrer Daten. Ändert sich beispielsweise die Bodenbeschaffenheit können sie die Werte überprüfen und die Prognose entsprechend ändern.

Ein weiteres Ziel der Forscher ist es, die Qualität der Prognosen zu überprüfen: Die Sensoren der John Deere Maschine zeichnen den Ertrag genauestens auf. Die Berater gleichen diese Werte nun mit dem vorausgesagten Ertrag ab und können durch diese Kennzahlen ihre Vorhersagen überprüfen. Langfristig sollen so sowohl Menge als auch Qualität des Ertrages verbessert werden.

Media Contact

Reinhard Karger idw

Weitere Informationen:

http://www.dfki.de

Alle Nachrichten aus der Kategorie: CeBIT 2008

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

IDAS: Drohnenabwehr 2.0

Gewollt oder ungewollt – unbekannte Drohnen können ein Sicherheitsrisiko darstellen. Seit 2017 beteiligt sich die Uni Würzburg an einem Verbundprojekt, das dafür nach Lösungen sucht. Nun geht es in die…

Plastikmüll in der Arktis stammt aus aller Welt

– auch aus Deutschland. Forschende des AWI haben Herkunft von Plastikmüll an den Stränden Spitzbergens analysiert. „Citizen Science“ ermöglicht es interessierten Bürgerinnen und Bürgern aktiv an wissenschaftlicher Forschung mitzuwirken. Wie…

Neue Standards zur Quantifizierung des Hepatitis-B-Virus-Reservoirs in Leberzellen

Etwa 300 Millionen Menschen sind mit dem Hepatitis-B-Virus (HBV) chronisch infiziert, was zu Leberzirrhose oder Leberkrebs führen kann. Therapien zur Heilung von HBV werden daher dringend benötigt. Aufgrund der einzigartigen…

Partner & Förderer