Sho Nagao erhält für seine Forschung am Mainzer Mikrotron den Exzellenzpreis der Universität Tohoku

Für seine Forschung am Mainzer Mikrotron (MAMI) im Rahmen seiner Promotion hat Dr. Sho Nagao den Exzellenzpreis der Universität Tohoku erhalten. Seine Arbeit wurde als beste Physik-Doktorarbeit des akademischen Jahrs 2015 ausgewählt.

Nagao beschreibt in seiner Arbeit eine neue experimentelle Methode zur Untersuchung von Hyperkernen, die Rückschlüsse auf die Kraft zulässt, welche zwischen den individuellen Teilchen innerhalb von Atomkernen wirkt: die Pion-Spektroskopie von Hyperkernen in der Elektroproduktion.

Mit Hilfe des MAMI-Elektronenstrahls gelang es, innerhalb einer Beryllium-Folie ein Proton eines Atomkerns in ein Hyperon umzuwandeln, das sich daraufhin in dem Atomkern einbettete und somit einen sogenannten Hyperkern bildete. Im Gegensatz zu Protonen und Neutronen, den Bausteinen normaler Atomkerne, beinhaltet ein Hyperon auch ein sogenanntes seltsames Quark.

Ein Teil der auf diese Weise künstlich geschaffenen Hyperkerne wurde in der Berylliumfolie gestoppt und zerfiel in jeweils einen leichteren Atomkern sowie ein Pion. Aus der extrem genauen Messung der Impulse solcher Pionen war es möglich, die Bindungsenergie eines Hyperkerns zu bestimmen, dessen Kern aus einem Proton, zwei Neutronen und einem Hyperon besteht. Das Ergebnis dieses Experiments wurde in Physical Review Letters veröffentlicht.

Die Experimente Sho Nagaos wurden 2011 und 2012 am Mainzer Mikrotron der Johannes Gutenberg-Universität Mainz (JGU) im Rahmen einer internationalen Kollaboration durchgeführt. Seine wissenschaftliche Arbeit war nicht zuletzt dank der engen Kooperation der Universitäten in Mainz und Sendai (Japan) auch in den schwierigen Zeiten des Tohoku-Erdbebens im März 2011, gefolgt von Tsunami und Nuklearkatastrophe in Fukushima, möglich geworden.

Als infolge der Katastrophe alle Beschleuniger im Osten Japans am 11. März 2011 gestoppt wurden, konnte Nagao seine Forschung in Mainz fortsetzen. Dies war der Auftakt zu einer Zusammenarbeit der beiden Universitäten auf studentischer Ebene: Nagaos Doktorvater Prof. Satoshi Nue Nakamura sendet seitdem regelmäßig Studierende aus seiner Arbeitsgruppe in Sendai nach Mainz.

Nach der durch das Seebeben und den langen Wiederaufbau bedingten Pause der japanischen Beschleuniger gibt es auch die Idee, zukünftig Mainzer Studierenden die Möglichkeit zu geben, nach Japan zu gehen. Der Mainzer Dozent PD Dr. Patrick Achenbach hat bereits ein Semester dort gelehrt, im Sommersemester 2011 nach der Katastrophe.

Veröffentlichung:
A. Esser, S. Nagao, F. Schulz et al.
Observation of 4Λ H Hyperhydrogen by Decay-Pion Spectroscopy in Electron Scattering
Physical Review Letters, 9. Juni 2015
DOI: http://dx.doi.org/10.1103/PhysRevLett.114.232501

Foto:
http://www.uni-mainz.de/bilder_presse/08_kernphysik_nagao.jpg
Dr. Sho Nagao nach der Preisverleihung
Foto/©: Prof. Satoshi Nue Nakamura

Weitere Informationen:
PD Dr. Patrick Achenbach
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 6131 39-25777
E-Mail: patrick@kph.uni-mainz.de
http://www.kph.uni-mainz.de/

Weitere Links:
http://www.sci.tohoku.ac.jp/mediaoffice/20160309-3921.html (Pressemitteilung der Tohoku Universität vom 9. März 2016)

Media Contact

Petra Giegerich idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer