Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leitende Kunststoffe - kein Widerspruch

21.05.2002


Auf dem Weg in die molekulare Elektronik Auftaktveranstaltung zum 5. Internationalen Symposium über funktionelle p-Elektronensysteme

Vom 29. Mai bis 4. Juni 2002 findet in Ulm/Neu-Ulm mit mehr als 500 Teilnehmern aus aller Welt das 5. Internationale Symposium über funktionelle p-Elektronensysteme statt. Tagungsleiter ist Prof. Dr. Peter Bäuerle, Leiter der Abteilung Organische Chemie II der Universität Ulm. Eines der Themen des Symposiums bilden Chips und Displays aus Plastik.

Leitfähige und leuchtende Kunststoffe führen in eine neue Welt der Polymerelektronik. Biegsame Folien-Displays und Plastik-Chips könnten bald alle Bereiche des Alltags durchdringen. Die Idee, elektronische Bauteile komplett auf der Basis von Kunststoffen zu entwickeln, ist noch jung. Voraussetzung dafür war die Entwicklung elektrisch leitfähiger Polymere. Einer der für diese Entdeckung 2000 mit dem Nobelpreis für Chemie ausgezeichneten Forscher ist Prof. Dr. Alan J. Heeger von der University of California, Santa Barbara. Prof. Heeger wird an der Eröffnungsveranstaltung des Symposiums am

Mittwoch, dem 29. Mai 2002, 18.00 Uhr im Stadthaus am Münsterplatz, Ulm

teilnehmen, die unter dem Thema "Vom Nobelpreis zu High-Tech: Kunststoffe, die leiten und leuchten" steht.

Ein Paradox, das keines blieb

Kunststoffe sind leicht, beständig, lassen sich einfach verformen und verarbeiten, sind außerdem preiswert herzustellen. Aufgrund ihrer chemischen Struktur sind Polymere gegenüber Elektrizität perfekte Isolatoren, also genau das Gegenteil von Metallen. Unter diesen Voraussetzungen ist es eigentlich paradox, anzunehmen, daß ein Kunststoff elektrischen Strom leiten könnte. Die Amerikaner Alan Heeger und Alan MacDiarmid sowie der Japaner Hideki Shirakawa, die im Oktober 2000 mit dem Chemie-Nobelpreis ausgezeichnet wurden, fanden 1977 mit Hilfe mehrerer Zufälle heraus, wie solche Kettenmoleküle aufgebaut und behandelt werden müssen, damit sie diese Eigenschaft erwerben und sich wie Metalle verhalten. Das war die Geburtsstunde der elektrisch leitfähigen Polymere.

Damit auch in Kunststoffen Elektronen frei beweglich und nicht wie sonst an Atomkerne gekoppelt sind, müssen sie zunächst im Sinne eines allgemeinen Strukturprinzips abwechselnd Einfach- und Doppelbindungen zwischen den Kohlenstoffatomen ausbilden. Der Chemiker spricht hier von konjugierten Doppelbindungen. Diese Strukturelemente sind im sogenannten Polyacetylen, das aus dem Gas Acetylen hergestellt wird, perfekt zu einer »konjugierten« Kette zusammengefügt. Polyacetylen war schon länger als schwarzes Pulver bekannt, als Anfang der siebziger Jahre Shirakawa und ein Mitarbeiter herausfanden, wie man Polyacetylen synthetisieren kann, um schwarze, von der Innenwand des Reaktionsgefäßes abziehbare Filme zu erhalten.

Damit die Kettenmoleküle den elektrischen Strom leiten, müssen sie dotiert werden. Chemisch bedeutet dies, daß durch Oxidation oder Reduktion der Filme entweder einige Elektronen auf den Ketten entfernt oder hinzugefügt werden. Auf diese Weise verbleiben einzelne freie Elektronen, die wie bei den Metallen nicht mehr an die Atomrümpfe gebunden sind, sondern an den Molekülen entlanggleiten und so elektrische Ladung transportieren können. Shirakawa und MacDiarmid erreichten dies, indem sie oxidierenden Joddampf auf

Polyacetylen einwirken ließen. Die Filme wurden dabei tiefschwarz. Der erste metallisch leitfähige Kunststoff war hergestellt. Seine Leitfähigkeit kam der von Kupfer oder Silber (600.000 Siemens pro Zentimeter) schon ziemlich nahe. Bezogen auf das spezifische Gewicht war sie sogar deutlich besser.

Diese Entdeckung galt in der Fachwelt als großer Durchbruch. Damit begann auf diesem neuen Forschungsgebiet, das vielerlei Anwendungen versprach, ein internationaler Wettbewerb. Zehn Jahre später gelang es dann Herbert Naarmann und Nicholas Theophilou bei der BASF, durch weitere Optimierung der Herstellungsbedingungen den heute noch gültigen »Weltrekord« bezüglich der Leitfähigkeit von Polymeren aufzustellen. Ihre Polyacetylenfilme hatten Leitfähigkeiten in der Größenordnung von Kupfer. Allerdings erkannte man schnell, daß Polyacetylen aufgrund seiner strukturbedingten Instabilität gegen Sauerstoff und Luftfeuchtigkeit nicht das ideale Polymer für industrielle Anwendungen ist. In kurzer Folge wurden dann bis Mitte der achtziger Jahre einige weitere konjugierte Kettenmoleküle der ersten Generation entwickelt (Polyanilin, Polypyrrol, Polythiophen), die unter Einwirkung von Oxidations- und Reduktionsmitteln ebenfalls leitfähig werden. Damals hatte man vor allem die Vorstellung, wiederaufladbare Plastikbatterien entwickeln zu können, da die Materialien nicht nur den Strom leiten, sondern auch Ladungen speichern können. Heute werden leitfähige Kunststoffe als antistatische Folien, elektromagnetische Abschirmungen in elektronischen Schaltkreisen und als Schutzschilde auf Bildschirmen, in Durchkontaktierungen von Leiterplatten in der Elektronikindustrie oder im Korrosionsschutz verwendet. Große Fortschritte in dieser Richtung hat ein von der Firma Bayer seit Anfang der neunziger Jahre entwickeltes Polythiophen gebracht. Das aufgrund seiner chemischen Struktur wohl stabilste aller bekannten leitfähigen Polymere wird als dünne antistatische Schicht in fotografischen Filmen der Bayer-Tochter Agfa eingesetzt. Für die jährliche Produktion vieler Hunderttausend Quadratmeter dieser ultradünnen Schichten sind nur einige Tausend Kilogramm an Polymer notwendig.

Gleichwohl war Ende der achtziger Jahre eher Ernüchterung eingetreten. Die ursprünglich erwarteten Perspektiven ließen sich selbst nach mehr als 10 bis 13 Jahren weltweiter Forschung und Entwicklung offensichtlich nicht so einfach realisieren. Aber nicht nur der Zufall kann eine Forschungsrichtung beeinflussen, sondern auch ausdauernde Arbeit. In der Zwischenzeit hatten die Chemiker herausgefunden, wie man die leitfähigen Kunststoffe, die in ihrer ursprünglichen Form völlig unlöslich, unschmelzbar und deshalb auch schwer verarbeitbar sind, über strukturelle Veränderungen löslich machen kann. Damit war die Möglichkeit gegeben, die Polymere zu reinigen und Lösungen dieser leitfähigen Polymere der zweiten Generation in sehr dünne Filme zu gießen und damit leicht zu verarbeiten. Diese Entwicklung nutzte 1990 ein Forscherteam um den Physiker Richard Friend und den Chemiker Andrew Holmes aus dem englischen Cambridge, um aus einem anderen leitfähigen Kunststoff, dem Polyphenylenvinylen - diesmal in seiner halbleitenden Form, organische Leuchtdioden herzustellen. Friend und Holmes konnten zeigen, daß man eine dünne Schicht solcher Polymere zum Leuchten bringen kann, wenn ein Strom durch sie geschickt wird. Dieser Effekt wird Elektrolumineszenz genannt. Faszinierend an dieser Entdeckung ist, daß man sich im Gegensatz zu den punktförmigen anorganischen Leuchtdioden, wie wir sie von unseren CD-Playern kennen, nun sehr großflächige und flache Farbdisplays in allen Farben vorstellen kann, die sogar flexibel sein können. Mit einer relativ geringen Spannung, meist unter 10 Volt, und Lichtausbeuten bis 10 Prozent können sie ein bis zu hundertmal helleres Licht abstrahlen als ein normaler Fernsehbildschirm. Wegen der dünnen Polymerschicht erfordern sie wiederum nur ganz wenig Material. Weitere interessante Anwendungen wie Plastiklaser oder Plastiksolarzellen auf der Basis von LED-Polymerfilmen folgten in den letzten Jahren und sollen ebenfalls mit großen Anstrengungen zur Produktreife geführt werden.

Die Elektroniktechnologie ist derzeit auf teure Siliziumtransistoren angewiesen. Sie könnten durch preiswerte und flexible Polymere, also Plastiktransistoren, ersetzt werden. Diese Idee wurde erstmals von den Franzosen Francis Garnier und Denis Fichou vom CNRS in Paris verwirklicht. Sie präsentierten 1990 den ersten organischen Transistor, dessen halbleitende Schicht aus einem Polymer bestand. Das war die Geburtsstunde der Plastikelektronik. In der Zwischenzeit gelang es vor allem Forschern des niederländischen Elektronikkonzerns Philips in Eindhoven, nicht nur exzellent arbeitende Polymertransistoren herzustellen, sondern diese zu integrierten Schaltkreisen zusammenzubauen. Plastikelektronik wird die Silizium-Chips schon in absehbarer Zeit dort ablösen, wo einfache und massenproduzierte, billige Schaltkreise benötigt werden. Dies wird vermutlich in dem schnell wachsenden Markt der Etikettierung der Fall sein. Auf dieser Basis kann man sich auch elektronische Briefmarken vorstellen.

Organische Leuchtdioden und Plastikelektronik stehen kurz vor der Marktreife. Die weitere Entwicklung dürfte zur molekularen Elektronik führen, etwa zu einzelnen Polyacetylenmolekülen, die als Leiterstücke dienen oder zu molekularen Drähten, die es erlauben, Stromkreise im Molekülformat zu bauen. In der Zukunft werden wir vielleicht Transistoren und andere elektronische Komponenten aus einzelnen oder wenigen Molekülen herstellen können, was in dramatischer Weise die Schnelligkeit unserer Computer erhöhen und ihre Größe verringern wird.

Prof. Dr. Peter Bäuerle Tel. 0731-50-22850

Peter Pietschmann | Pressestelle

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?
21.06.2018 | ISOE - Institut für sozial-ökologische Forschung

nachricht Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?
21.06.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics