Radikale bei der Entstehung von Ziegler-Natta-Katalysatoren beobachtet

Max-Planck-Wissenschaftlern gelingt neuer Einblick in die molekularen Prozesse bei der Aktivierung des bewährten Katalysators

Polyethylen und Polypropylen sind zwei Kunststoffe, die aus unserem täglichen Leben nicht mehr wegzudenken sind. Technisch werden sie durch Kupplung der Gase Ethen oder Propen an der Oberfläche eines festen, so genannten Ziegler-Natta-Katalysators* erzeugt. Wie dieser allerdings auf molekularer Ebene entsteht, weiß man bis heute noch immer nicht genau. Jetzt haben Wissenschaftler des Fritz-Haber-Instituts der Max-Planck-Gesellschaft in Berlin um Thomas Risse und Hans-Joachim Freund den experimentellen Beweis für einen seit langem diskutierten Reaktionsmechanismus geliefert (Angewandte Chemie, 3. Mai 2002).

Ziegler-Natta-Katalysatoren bestehen aus verschiedenen Bestandteilen, deren Wechselwirkung für die Funktionsweise des Katalysators eine entscheidende Rolle spielen. Zum einen besteht ein solches System aus der aktiven Komponente, meist einem Titanzentrum, sowie dem Trägermaterial und einem Aktivierungsreagenz, in diesem Fall einer metallorganischen Aluminiumverbindung (Trimethylaluminium Al(Me)3).

Aufgrund der Komplexität dieses Systems ist es praktisch unmöglich, das genaue Zusammenspiel der Komponenten allein aus Untersuchungen des aktiven Katalysators zu erkennen. Da seine Entstehung fast immer über einen mehrstufigen Prozess abläuft, lassen sich zusätzliche Informationen deshalb durch die Charakterisierung gezielt hergestellter Zwischenstufen erhalten. Die Wissenschaftler des Berliner Fritz-Haber-Instituts präparierten und charakterisierten daher neben dem aktiven Katalysator verschiedene Zwischenstufen. Vor allem eine spezielle Reaktion, nämlich die Aktivierung des Titanzentrums mit der metallorganischen Aluminiumverbindung, stand dabei im Mittelpunkt dieser Experimente – sie ist von zentraler Bedeutung für die Wirksamkeit des Systems.

Doch für einen komplexen, technisch eingesetzten Katalysator ist die molekulare Charakterisierung auch dieser Teilschritte noch nicht möglich. Daher vereinfachten die Max-Planck-Wissenschaftler das untersuchte System auf zwei Wegen weiter. Zum einen verwendeten sie strukturell einfachere Modell-Oberflächen. Zum anderen untersuchten sie das System unter Vakuumbedingungen, um so störende Einflüsse der Umgebung auszuschließen.

Abb. 1: Schematische Darstellung des verwandten Modellkatalysators vor (a) und nach (b) der Aktivierung mit Trimethylaluminium.
Grafik: Fritz-Haber-Institut der Max-Planck-Gesellschaft

Unter kontrollierten Bedingungen beschichteten die Forscher zunächst einen Palladium-Einkristall mit dem eigentlichen Trägermaterial, einem dünnen Magnesiumchlorid-Film. Auf diesem wurden Titanchloride als reaktive Zentren verankert (vgl. Abb.1a). Anschließend wurde dieses System bei tiefen Temperaturen mit Trimethylaluminium aktiviert (vgl. Abbildung 1b). Dabei wird das Titanzentrum durch die Aluminiumverbindung chemisch reduziert.

Das kann auf verschiedene Weise geschehen. Nach einer gängigen Hypothese erfolgt diese Reduktion unter Freisetzung einer sehr reaktiven Spezies, eines so genannten Radikals. Die Berliner Wissenschaftler konnten nun erstmals direkt zeigen, dass bei tiefen Temperaturen (40 Kelvin) tatsächlich Radikale als Zwischenprodukte entstehen. Der Nachweis gelang durch ein Elektronen-Spin-Resonanz-Experiment. Damit ist es möglich, eine charakteristische Eigenschaft dieser speziellen Klasse von Molekülen aufzuspüren. Wegen der großen Reaktivität solcher Verbindungen lassen sich diese Moleküle allerdings nur bei tiefer Temperatur und beim Fehlen geeigneter Reaktionspartner nachweisen – das war der Grund, weshalb sie bislang nicht gefunden wurden.

Durch die beschriebenen Messungen an diesem Modellkatalysator konnten die Wissenschaftler nun erstmals einen „radikalischen“ Aktivierungs-Mechanismus – bei dem also Radikale frei werden – zweifelsfrei beweisen. Die Max-Planck-Forscher entdeckten damit einen wichtigen Baustein in der Kette von Reaktionen, die aus einfachen Molekülen einen wirksamen Ziegler-Natta-Katalysator machen. Der hier beschrittene Weg der Verwendung einfacher Modellsysteme zur Untersuchung molekularer Prozesse wird am Fritz-Haber-Institut auch erfolgreich für andere Katalysatorsysteme angewendet. Das dabei gewonnene Verständnis der Prozesse kann künftig zu einer gezielter Weiterentwicklung von Katalysatorsystemen beitragen.

*Ziegler-Natta-Katalysatoren sind nach den beiden Wissenschaftlern Karl Ziegler (1898-1973), Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr, und dem italienischen Chemiker Giulio Natta (1903-1979) benannt, die 1963 gemeinsam mit dem Nobelpreis für Chemie ausgezeichnet worden sind. Originalveröffentlichung der Arbeit:

T. Risse, J. Schmidt, H. Hamann, and H.-J. Freund, Angew. Chem. Int. Ed. 41, 1517 (2002).

Media Contact

Dr. Bernd Wirsing Presseinformation

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer