Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schmetterlinge machen Geld fälschungssicher

01.06.2010
Farbeffekt der schillernden Flügel nanotechnologisch nachgebaut

Physiker an der University of Cambridge haben es geschafft, das Schillern von Schmetterlingsflügeln in hellen, bunten Farben mit künstlichen Nanostrukturen nachzumachen.

Dieser Effekt könnte anderwärtig genutzt werden. "Sicherheitsdrucktechnik ist eine der offensichtlichsten Anwendungen", meint Mathias Kolle, Doktorand am Fachbereich Physik in Cambridge, gegenüber pressetext. Das biologische Vorbild verspricht also fälschungssicherere Geldscheine und Ausweise.

Titanisches Schillern

Das Schillern von Schmetterlingsflügeln entsteht nicht aufgrund von Farbpigmenten, sondern durch eine spezielle mikroskopische Struktur der Flügel. Von einer indonesischen Schwalbenschwanz-Art haben die Wissenschaftler ebendiese Strukturen aus Titan- und Aluminiumoxid exakt nachgebaut. Dazu haben sie verschiedene nanotechnologische Prozesse genutzt, darunter die Ablagerung atomdicker Schichten und Selbstorganisation. Freilich ist es nicht nur möglich, einen Schmetterlingsflügel originalgetreu nachzubauen, sondern mit künstlichen Materialien zusätzliche Effekte zu bewirken.

"Ich sehe den Hauptvorteil darin, das man durch leichte Variation des natürlichen Designs eine viel drastischere Farbvariation erreichen kann, als das mit herkömmlichen im Sicherheitsdruck verwendeten Hologrammen möglich ist", sagt Kolle. Zwar müssen die Strukturen dazu noch weiterentwickelt werden. "In Zukunft könnten wir Strukturen nach Schmetterlingsflügel-Vorbild auf dem Zehn-Pfund-Schein oder sogar Pässen sehen", meint aber der Physiker. Denkbar sei auch, dass sich Anwendungsmöglichkeiten bei Lackierungen oder Sicherheitsmarkierungen ergeben.

Bio-Verschlüsselung

Wie der Schiller-Mechanismus Informationen verschlüsseln kann, zeigt sich am Beispiel des tropischen Schmetterlings selbst. "Mit der richtigen optischen Ausrüstung sehen jene Bereiche, die für das Auge grün wirken, blau aus", erklärt Kolle. Die Forscher vermuten, dass die Schmetterlinge selbst das Blau wahrnehmen und dadurch Artgenossen erkennen können. Sofern Räubern dagegen die grünlichen Flecken sehen, würde das im dichten Blättergewirr der Tropen der Tarnung dienen. Daher regen die Physiker an, dass derartige Farbcodierungen in der Insektenwelt genauer untersucht werden sollten.

Ob und wann das biologische Vorbild tatsächlich Anwendung im Sicherheitsdruck finden wird, ist Kolle zufolge noch schwer abzuschätzen. Das liegt auch daran, dass die nötige Ausrüstung bislang relativ teuer ist. Andererseits könne das gerade bei einem Fälschungsschutz auch von Vorteil sein, so der Physiker.

Thomas Pichler | pressetext.austria
Weitere Informationen:
http://www.phy.cam.ac.uk

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenbits ins Glasfasernetz bringen: Start des Projekts QFC-4-1QID
15.10.2019 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt
15.10.2019 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sensorschleuse Argus von dormakaba mit ICONIC Award 2019 ausgezeichnet

15.10.2019 | Förderungen Preise

Rezeptorkomplexe am Fließband

15.10.2019 | Biowissenschaften Chemie

Quantenbits ins Glasfasernetz bringen: Start des Projekts QFC-4-1QID

15.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics