Wie können Bypass-Operationen noch erfolgreicher werden? Fast die Hälfte der verpflanzten Venen, die den Blutfluss im Herz wieder herstellen sollen, ist nach zehn Jahren verschlossen. Eine gentherapeutische Vorbehandlung der Venenstücke könnte diese Gefahr bannen, da sie die Wanderung von Muskelzellen in die Gefäßwand stoppt. Für diese Erkenntnis hat eine Arbeitsgruppe um Privatdozent Dr. Klaus Kallenbach, Oberarzt in der Klinik für Herzchirurgie des Universitätsklinikums Heidelberg, den mit 5.000 Euro dotierten Robert-Stich- Preis für exzellente Forschung der Deutschen Gesellschaft für Thorax-, Herz- und Gefäßchirurgie erhalten.
Zur Umleitung des Blutflusses um verstopfte Arterien am Herzen oder in den Beinen werden den Patienten in Bypass-Operationen meist Ersatzstücke aus ihren eigenen Wadenvenen eingesetzt. Innerhalb dieser Venenabschnitte wandern jedoch nach der Operation häufig glatte Muskelzellen aus der mittleren Gefäßwand in die innere Gefäßwand ein, wo sie wachsen und sich vermehren. So entsteht eine neue Schicht der inneren Gefäßwand (Neointima), die den Innendurchmesser des implantierten Blutgefäßes verengt. Im Bypass kann Arteriosklerose entstehen.
Gen sorgt für eine langsamere Wanderung der Muskelzellen
Die Forschungsgruppe fand nun zunächst in Reagenzglasversuchen im Labor heraus, dass glatte Muskelzellen ein Zellkulturmodell der Gefäßwand viel langsamer durchwandern, wenn sie besonders große Mengen des Enzyms Matrix-Metalloproteinase-3 (MMP-3) herstellen. Dazu schleusten sie das Gen für diesen Wirkstoff mit Hilfe eines Virus in die Muskelzellen ein und stellten - im Vergleich zu einer Kontrollgruppe - eine bis zu 20mal geringere Beweglichkeit der genetisch veränderten Zellen fest.
Diesen Befund erhärteten Dr. Kallenbach und seine Mitarbeiter in Versuchen mit Kaninchen, die mit einer cholesterinreichen Kost gefüttert wurden. In einer Bypassperation wurde den Tieren ein Stück ihrer Halsvenen zur Umgehung ihrer Halsarterien eingesetzt. Venenstücke, die vor der Operation mit Hilfe der Vieren gentherapeutisch veränderten wurden und dadurch übermäßig viel MMP-3 herstellten, zeigten im weiteren Verlauf der Versuche eine deutlich verringerte Verdickung ihrer inneren Wand. Bei den Tieren, denen unbehandelte Venenstücke implantiert worden waren, hatten sich die Gefäßwände dagegen viel schneller verengt.
Enzym MMP-3 schützt die Gefäßwand
"Diese erstmals gewonnenen Ergebnisse sind überraschend", sagt Klaus Kallenbach. "Denn bisher gilt das Enzym MMP-3 vor allem als Förderer des Umbaus und der Verdickung der Gefäßwände." Einer Machete vergleichbar, die einen Dschungel lichtet, bahnt das aggressive, proteinspaltende Enzym MMP-3 den glatten Muskelzellen nämlich normalerweise einen Weg durch das dichte Fasergestrüpp aus Kollagen und anderen Proteinen, von dem sie umgeben sind. "Hohe Konzentrationen von MMP-3 scheinen demgegenüber einen schützende Funktion für die Gefäße zu haben", kommentiert Kallenbach seine preisgekrönte Arbeit. "Jetzt kommt es darauf an, den Mechanismus aufzuklären, mit dem die gentherapeutisch angeregte MMP-3-Überproduktion den langfristigen Erfolg von Bypassoperationen verbessern kann."
Literatur:(Der Originalartikel kann bei der Pressestelle des Universitätsklinikums Heidelberg unter contact@med.uni-heidelberg.de angefordert werden.)
Kontakt:
Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de/presse
Weitere Berichte zu: > Bypass > Gefäßwand > Muskelzelle > Vene
Acht Millionen Euro für die Forschung: Smarte Implantate sollen Knochen besser heilen
10.12.2019 | Universität des Saarlandes
German Design Award 2020 für Sensorschleuse Argus von dormakaba
09.12.2019 | dormakaba Deutschland GmbH
In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.
Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...
In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.
Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...
The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.
Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...
Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.
Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.
Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...
Anzeige
Anzeige
Analyse internationaler Finanzmärkte
10.12.2019 | Veranstaltungen
QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien
04.12.2019 | Veranstaltungen
03.12.2019 | Veranstaltungen
Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung
12.12.2019 | Medizin Gesundheit
Urbane Gärten: Wie Agrarschädlinge von Städten profitieren
12.12.2019 | Biowissenschaften Chemie
Die „Luft“ im Ozean wird dünner - Sauerstoffgehalte im Meerwasser gehen weiter zurück
12.12.2019 | Biowissenschaften Chemie