Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solare Brennstoffe: Raffinierte Schutzschicht für das „Künstliche Blatt”

21.03.2016

Ein Team am HZB-Institut für Solare Brennstoffe hat ein Verfahren entwickelt, um empfindliche Halbleiter für die solare Wasserspaltung („Künstliches Blatt“) mit einer organischen transparenten Schutzschicht zu versehen. Die extrem dünne Schutzschicht aus vernetzten Kohlenstoffatomen ist stabil und leitfähig und mit Katalysator-Nanopartikeln aus Metalloxiden bedeckt. Diese beschleunigen die Spaltung von Wasser unter Lichteinstrahlung. Das Team konnte erstmals eine Hybridstruktur herstellen, die 12 Prozent der Solarenergie in Form von Wasserstoff speichert. Die Ergebnisse sind nun in Advanced Energy Materials veröffentlicht.

Ein „Künstliches Blatt“ besteht im Prinzip aus einer Solarzelle, die mit weiteren funktionalen Schichten kombiniert wird. Diese wirken als Elektroden und sind außerdem mit Katalysatoren beschichtet. Wird das komplexe Materialsystem in Wasser getaucht und beleuchtet, kann es Wassermoleküle zerlegen. Dabei entsteht Wasserstoff, der die Sonnenenergie in chemischer Form speichert.


Die Skizze zeigt den Aufbau der Probe: die n-dotierte Siliziumschicht (schwarz), eine dünne Siliziumoxidschicht (grau), eine Zwischenschicht (gelb) und schließlich die Schutzschicht (braun), auf der die Katalysatorpartikel mit dem Elektrolyten (grün) in Kontakt kommen. Bild: M. Lublow/HZB

Nach dem gegenwärtigen Stand der Technik gibt es jedoch noch mehrere Probleme: zum einen muss trotz der zusätzlichen Materialschichten noch ausreichend Licht in die Solarzelle gelangen, um die Spannung für die Wasserspaltung zu erzeugen. Darüber hinaus halten die Halbleitermaterialien, aus denen Solarzellen in der Regel bestehen, dem mit Säure versetzten Wasser nicht lange stand. Daher braucht das „Künstliche Blatt“ eine stabile Schutzschicht, die gleichzeitig transparent und leitfähig sein muss.

Katalysator doppelt genutzt

Das Team arbeitete mit Proben aus Silizium, einem n-dotierten Halbleitermaterial, das als einfache Solarzelle bei Beleuchtung eine Spannung liefert. Die Materialwissenschaftlerin Anahita Azarpira, Doktorandin in der Gruppe von Dr. Thomas Schedel-Niedrig, präparierte diese Proben so, dass sich zunächst Ketten von Kohlenstoff-Wasserstoff-Verbindungen auf der Siliziumoberfläche bildeten.

„In einem weiteren Schritt habe ich dann Nanopartikel aus dem Katalysator Rutheniumdioxid abgeschieden“, erklärt Azarpira. Als Ergebnis bildete sich eine leitfähige und stabile Polymerstruktur von nur drei bis vier Nanometern Dicke. Dabei waren die Reaktionen in der elektrochemischen Präparationszelle überaus kompliziert und konnten erst jetzt mit Hilfe von Dr. Michael Lublow am HZB aufgeschlüsselt werden.

Mit diesem neuen Verfahren werden die Rutheniumdioxid-Partikel zum ersten Mal doppelt genutzt: Zuerst sorgen sie dafür, dass eine effektive organische Schutzschicht entsteht. Damit werden die üblicherweise sehr komplizierten Verfahren zur Herstellung von Schutzschichten wesentlich vereinfacht. Erst dann erledigen sie ihren „normalen Job“ und beschleunigen die Aufspaltung von Wasser in Sauerstoff und Wasserstoff.

Hohe Effizienz: 12 Prozent der Solarenergie in Wasserstoff gespeichert

Die so geschützte Silizium-Elektrode erreicht eine „Solar-to-Hydrogen“-Effizienz von ca. 12 Prozent. Während der gesamten Messdauer von 24 Stunden beobachteten die Forscher außerdem keine Degradation der Zelle, die Ausbeute blieb stabil. „Bemerkenswert ist, dass bisher ein ganz anderes Material als organische Schutzschicht favorisiert wurde: Graphen.

Dieses vieldiskutierte zweidimensionale Material konnte jedoch bisher nur eingeschränkt für elektrochemische Prozesse eingesetzt werden, während die von uns entwickelte Schutzschicht sehr gut funktioniert“, erklärt Michael Lublow. „Weil sich das neuartige Material sowie das Abscheidungsverfahren auch für andere Anwendungen eignen könnten, streben wir nun internationale Schutzrechte an“, sagt Teamleiter Thomas Schedel-Niedrig.

“Sustained Water Oxidation by Direct Electrosynthesis of Ultrathin Organic Protection Films on Silicon”, Anahita Azarpira, Thomas Schedel-Niedrig, H.-J. Lewerenz, Michael Lublow* in Advanced Energy Materials DOI: 10.1002/ aenm.201502314


Kontakt:
Dr. Michael Lublow
lublow@helmholtz-berlin.de

Dr. Thomas Schedel-Niedrig
schedel-niedrig@helmholtz-berlin.de

Anahita Azarpira
anahita.azarpira@helmholtz-berlin.de

Pressekontakt:
Dr. Antonia Rötger
antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14423&sprache=de&ty...
http://onlinelibrary.wiley.com/doi/10.1002/aenm.201502314/full

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics