Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solare Brennstoffe: Raffinierte Schutzschicht für das „Künstliche Blatt”

21.03.2016

Ein Team am HZB-Institut für Solare Brennstoffe hat ein Verfahren entwickelt, um empfindliche Halbleiter für die solare Wasserspaltung („Künstliches Blatt“) mit einer organischen transparenten Schutzschicht zu versehen. Die extrem dünne Schutzschicht aus vernetzten Kohlenstoffatomen ist stabil und leitfähig und mit Katalysator-Nanopartikeln aus Metalloxiden bedeckt. Diese beschleunigen die Spaltung von Wasser unter Lichteinstrahlung. Das Team konnte erstmals eine Hybridstruktur herstellen, die 12 Prozent der Solarenergie in Form von Wasserstoff speichert. Die Ergebnisse sind nun in Advanced Energy Materials veröffentlicht.

Ein „Künstliches Blatt“ besteht im Prinzip aus einer Solarzelle, die mit weiteren funktionalen Schichten kombiniert wird. Diese wirken als Elektroden und sind außerdem mit Katalysatoren beschichtet. Wird das komplexe Materialsystem in Wasser getaucht und beleuchtet, kann es Wassermoleküle zerlegen. Dabei entsteht Wasserstoff, der die Sonnenenergie in chemischer Form speichert.


Die Skizze zeigt den Aufbau der Probe: die n-dotierte Siliziumschicht (schwarz), eine dünne Siliziumoxidschicht (grau), eine Zwischenschicht (gelb) und schließlich die Schutzschicht (braun), auf der die Katalysatorpartikel mit dem Elektrolyten (grün) in Kontakt kommen. Bild: M. Lublow/HZB

Nach dem gegenwärtigen Stand der Technik gibt es jedoch noch mehrere Probleme: zum einen muss trotz der zusätzlichen Materialschichten noch ausreichend Licht in die Solarzelle gelangen, um die Spannung für die Wasserspaltung zu erzeugen. Darüber hinaus halten die Halbleitermaterialien, aus denen Solarzellen in der Regel bestehen, dem mit Säure versetzten Wasser nicht lange stand. Daher braucht das „Künstliche Blatt“ eine stabile Schutzschicht, die gleichzeitig transparent und leitfähig sein muss.

Katalysator doppelt genutzt

Das Team arbeitete mit Proben aus Silizium, einem n-dotierten Halbleitermaterial, das als einfache Solarzelle bei Beleuchtung eine Spannung liefert. Die Materialwissenschaftlerin Anahita Azarpira, Doktorandin in der Gruppe von Dr. Thomas Schedel-Niedrig, präparierte diese Proben so, dass sich zunächst Ketten von Kohlenstoff-Wasserstoff-Verbindungen auf der Siliziumoberfläche bildeten.

„In einem weiteren Schritt habe ich dann Nanopartikel aus dem Katalysator Rutheniumdioxid abgeschieden“, erklärt Azarpira. Als Ergebnis bildete sich eine leitfähige und stabile Polymerstruktur von nur drei bis vier Nanometern Dicke. Dabei waren die Reaktionen in der elektrochemischen Präparationszelle überaus kompliziert und konnten erst jetzt mit Hilfe von Dr. Michael Lublow am HZB aufgeschlüsselt werden.

Mit diesem neuen Verfahren werden die Rutheniumdioxid-Partikel zum ersten Mal doppelt genutzt: Zuerst sorgen sie dafür, dass eine effektive organische Schutzschicht entsteht. Damit werden die üblicherweise sehr komplizierten Verfahren zur Herstellung von Schutzschichten wesentlich vereinfacht. Erst dann erledigen sie ihren „normalen Job“ und beschleunigen die Aufspaltung von Wasser in Sauerstoff und Wasserstoff.

Hohe Effizienz: 12 Prozent der Solarenergie in Wasserstoff gespeichert

Die so geschützte Silizium-Elektrode erreicht eine „Solar-to-Hydrogen“-Effizienz von ca. 12 Prozent. Während der gesamten Messdauer von 24 Stunden beobachteten die Forscher außerdem keine Degradation der Zelle, die Ausbeute blieb stabil. „Bemerkenswert ist, dass bisher ein ganz anderes Material als organische Schutzschicht favorisiert wurde: Graphen.

Dieses vieldiskutierte zweidimensionale Material konnte jedoch bisher nur eingeschränkt für elektrochemische Prozesse eingesetzt werden, während die von uns entwickelte Schutzschicht sehr gut funktioniert“, erklärt Michael Lublow. „Weil sich das neuartige Material sowie das Abscheidungsverfahren auch für andere Anwendungen eignen könnten, streben wir nun internationale Schutzrechte an“, sagt Teamleiter Thomas Schedel-Niedrig.

“Sustained Water Oxidation by Direct Electrosynthesis of Ultrathin Organic Protection Films on Silicon”, Anahita Azarpira, Thomas Schedel-Niedrig, H.-J. Lewerenz, Michael Lublow* in Advanced Energy Materials DOI: 10.1002/ aenm.201502314


Kontakt:
Dr. Michael Lublow
lublow@helmholtz-berlin.de

Dr. Thomas Schedel-Niedrig
schedel-niedrig@helmholtz-berlin.de

Anahita Azarpira
anahita.azarpira@helmholtz-berlin.de

Pressekontakt:
Dr. Antonia Rötger
antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14423&sprache=de&ty...
http://onlinelibrary.wiley.com/doi/10.1002/aenm.201502314/full

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Laden ohne Netzengpässe
20.01.2020 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Terahertz-Strahl bricht Rekorde
20.01.2020 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: DKMS-Studie zum Erfolg von Stammzelltransplantationen

Den möglichen Einfluss von Killerzell-Immunoglobulin-ähnlichen Rezeptoren (KIR) auf den Erfolg von Stammzelltransplantationen hat jetzt ein interdisziplinäres Forscherteam der DKMS untersucht. Das Ergebnis: Bei 2222 Patient-Spender-Paaren mit bestimmten KIR-HLA-Kombinationen konnten die Wissenschaftler keine signifikanten Auswirkungen feststellen. Jetzt wollen die Forscher weitere KIR-HLA-Kombinationen in den Blick nehmen – denn dieser Forschungsansatz könnte künftig Leben retten.

Die DKMS ist bekannt als Stammzellspenderdatei, die zum Ziel hat, Blutkrebspatienten eine zweite Chance auf Leben zu ermöglichen. Auch auf der...

Im Focus: Gendefekt bei Zellbaustein Aktin sorgt für massive Entwicklungsstörungen

Europäische Union fördert Forschungsprojekt „PredActin“ mit 1,2 Millionen Euro

Aktin ist ein wichtiges Strukturprotein in unserem Körper. Als Hauptbestandteil des Zellgerüstes sorgt es etwa dafür, dass unsere Zellen eine stabile Form...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

KIT im Rathaus: Städte und Wetterextreme

21.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lass uns eine Zelle bauen

22.01.2020 | Biowissenschaften Chemie

Messtechnische Unterstützung für chirurgische Eingriffe

22.01.2020 | Medizintechnik

Naturstoffe gegen Fibrose und diastolische Herzschwäche entdeckt

22.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics