Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller und günstiger zu neuartigen Solarzellen

06.02.2020

Der Halbleiter Perowskit gilt als neue Hoffnung, den Herstellungspreis für Solarzellen unter denjenigen des bislang verwendeten Siliziums zu drücken. Die Empa entwickelt neue Herstellungsverfahren, um Perowskit-Solarzellen nicht nur günstiger, sondern auch schneller zu produzieren und fit für die Industrie zu machen.

Seit der Entwicklung der ersten Perowskit-Solarzelle im Jahr 2009 liegt deren Wirkungsgrad mittlerweile gleichauf mit demjenigen einer herkömmlichen Silizium-Zelle.


The slot die applies a carbon layer to the glass substrate. This allows all five layers of the solar cell to be applied one after the other and dried together. With the conventional screen printing process, each layer had to be dried separately for at least one hour. Image: Empa

Doch sie wies anfangs noch einige Schwächen auf; so reagiert sie beispielsweise Aufgrund ihres Aufbaus und der verwendeten Materialien sehr empfindlich auf Feuchtigkeit, Sauerstoff, Hitze, UV-Licht und mechanische Belastung. Dadurch wird die Zelle weniger lange haltbar.

Eine Lösung für dieses Problem fanden Michael Grätzel und Hongwei Han im Jahr 2014, als die beiden EPFL-Forscher eine Zelle mit einem Gerüst aus Oxiden und Kohlenstoff entwickelten. Doch diese Idee war noch nicht markttauglich.

Zumindest bis jetzt: Frank Nüesch, Leiter der Empa-Abteilung Funktionspolymere, und sein Team arbeiteten in den letzten Jahren intensiv an neuen Herstellungsverfahren für eben diese Solarzellen, um sie nicht nur schneller, sondern auch günstiger zu produzieren.

Dazu arbeiteten die Forschenden im Rahmen eines Projekts des Bundesamtes für Energie (BFE) mit dem Westschweizer Unternehmen Solaronix SA zusammen. Gemeinsam stellten sie eine funktionsfähige Perowskit-Zelle im Labormassstab mit einer Fläche von 10x10cm her.

Schlitzdüse statt Siebdruck

Für die Herstellung dieser neuartigen Perowskit-Zelle kommt das sogenannte Schlitzdüsenverfahren zum Einsatz. Dabei wird die Materialschicht auf eine Glasschicht aufgetragen und im Anschluss strukturiert, indem überschüssiges Material mittels Laser entfernt wird.

«Mit dem neuen Beschichtungsverfahren können wir nicht nur schneller beschichten, sondern auch die Dicke der einzelnen Schichten flexibler festlegen», so Nüesch.

Mit dem Schlitzdüsenverfahren lassen sich künftig relativ einfach und schnell meterlange Bahnen beschichten. Die erhöhte Beschichtungsgeschwindigkeit ist dann auch das zentrale Element bei einer möglichen Industrialisierung der Perowskit-Zellproduktion.

Insgesamt fünf Schichten aus unterschiedlichen Materialien, darunter Titanoxid, Zirkonoxid und Graphit, sind für eine solche Zelle nötig. Während beim bisherigen Siebdruck Verfahren die Schichten einzeln getrocknet und gesintert (also verdichtet) werden müssen – was viel Zeit und Energie in Anspruch nimmt –, lassen sich beim Schlitzdüsenverfahren sämtliche Schichten direkt nacheinander auftragen und gemeinsam sintern.

«Mit diesem neuen Verfahren können wir sieben Mal schneller 'drucken' als mit der bisherigen Methode im Siebdruck», erklärt Nüesch. Den finalen Touch erhält die Perowskit-Solarzelle durch das Aufbringen des Perowskit-Absorbers mittels Tintenstrahl-Druck im «Coating Competence Center» der Empa – dem sogenannten Infiltrieren.

Dabei wird das Perowskit nicht wie bisher als feste Schicht auf das Substrat aufgebracht, sondern sickert durch alle porösen Unterschichten der Solarzelle bis zum Boden.

Eine erfolgreiche Kooperation

Bei der Entwicklung des neuen Verfahrens arbeitete das Empa-Team eng mit Solaronix-Experten zusammen. Von ihnen stammen die «Tinten» – also die nanoskaligen Leiter, Halbleiter und Isolatoren – – für den Druck der einzelnen, hauchdünnen Schichten der Solarzelle.

Die Schwierigkeit für die Empa-Forschenden bestand darin, diese Tinte so aufzubereiten, dass sie sich für das Schlitzdüsenverfahren eignet. Auch die verschiedenen Einstellungen der Beschichtungseinheit, zum Beispiel die Geschwindigkeit der Schlitzdüse, die Durchflussgeschwindigkeit und der Abstand der Schlitzdüse zum Substrat, mussten aufeinander abgestimmt werden, um ein optimales Resultat zu erreichen. Genau das ist ihnen nun gelungen.

Ein weiterer Vorteil, den die mit diesem neuartigen Verfahren hergestellten Perowskit-Solarzellen mit sich bringen, ist eine längere Lebensdauer im Vergleich zu bisherigen Perowskit-Zellen. In einem nächsten Schritt folgen Praxistests: Ende 2020 werden die Perowskit-Solarzellen auf dem Dach des NEST-Gebäudes auf dem Empa-Campus in Dübendorf montiert, wo sie sich im Alltag bewähren müssen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Frank Nüesch
Abteilung für Funktionspolymere
Tel. +41 58 765 47 40
Frank.Nueesch@empa.ch

Dr. Jakob Heier
Abteilung für Funktionspolymere
Tel: +41 58 765 4356
Jakob. Heier@empa.ch

Dr. Anand Verma
Abteilung für Funktionspolymere
Tel: +41 58 765 6088
Anand.Verma@empa.ch

Weitere Informationen:

https://www.empa.ch/web/s604/perovskit-solarpanel-solaronix

Empa Redaktion | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?
10.07.2020 | Technische Universität Ilmenau

nachricht KIT forscht in vier neuen Batterie-Kompetenzclustern
09.07.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics