Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im All sind Brennstoffzellen längst Standard

15.01.2004


Ob in Autos, Laptops oder Motorrollern – von wenigen Ausnahmen abgesehen sind Brennstoffzellensysteme meist noch Jahre von der Serienreife entfernt. In einem sogar besonders sensiblen Bereich der Technik ist die Brennstoffzelle jedoch seit vielen Jahren Standard: In der Raumfahrt werden seit mehr als vierzig Jahren Brennstoffzellen eingesetzt, um Strom, Wärme und Wasser für die Bordsysteme herzustellen. Eine wesentliche Triebfeder für die Weiterentwicklung dieser Technologie war die Raumfahrt dennoch nie – zu speziell und eng umrissen sind die Anforderungen an die Systeme.


Unförmig und groß, aber leistungsfähig und zuverlässig sind die in den Space Shuttles eingesetzten Brennstoffzellensysteme von UTC Fuel Cells. Foto: UTC Cells



An Bord der amerikanischen Space Shuttles sind Brennstoffzellen keine exotische Technologie, sondern sie waren von den Anfängen im Jahr 1981 an fester Bestandteil des technischen Konzepts. In den – derzeit vorrübergehend stillgelegten – Raumfähren verrichtet ein Brennstoffzellentrio des Herstellers UTC Fuel Cells seinen Dienst und versorgt die komplette Raumfähre mit elektrischer Energie.



Zum Einsatz kommen dabei Alkalische Brennstoffzellen (AFCs) – ein Brennstoffzellentyp, der außer in der Raumfahrt und beim Militär kaum Verwendung findet. Der Grund: AFCs arbeiten statt mit Luft nur mit sehr reinem Sauerstoff. Die als Elektrolyt verwendete Kalilauge (KOH) würde mit dem in der Luft enthaltenen Kohlendioxid zu Kaliumkarbonat reagieren, was die Poren der Elektroden blockiert. So muss neben dem Wasserstofftank ein weiterer für den Sauerstoff mitgeführt werden. Das macht den breiten Einsatz von AFCs beispielsweise für Autos indiskutabel. In der Raumfahrt spielt dieser Faktor freilich keine Rolle, denn für die Flüge ins All muss ja ohnehin Sauerstoff an Bord genommen werden. Bei den Millionensummen, die eine Weltraummission kostet, fällt auch der Preis für den Sauerstoff nicht ins Gewicht.

Mehrere Charakteristika machen AFCs für die Raumfahrt interessant: Mit Betriebstemperaturen von nur rund 80 Grad sind sie technisch leicht zu beherrschen. Zudem liegt der elektrische Wirkungsgrad mit bis zu 70 Prozent höher als bei jedem anderen Brennstoffzellentyp. Das macht die Zelle im Verhältnis zu ihrer Leistung auch besonders leicht.

Die im Space Shuttle eingesetzten drei UTC-Zellen arbeiten voneinander unabhängig und liefern bei einer Spannung von 28 Volt eine elektrische Dauerleistung von 12 Kilowatt. Eine einzige Zelle reicht damit aus, um die Raumfähre im Notfall alleine mit Strom zu versorgen. Ein System wiegt rund 120 Kilogramm und misst etwa vierzig mal vierzig mal hundert Zentimeter. Wasserstoff und Sauerstoff werden im Space Shuttle in flüssiger Form in isolierten Kühltanks mitgeführt. Auch das bei der kalten Verbrennung entstehende Wasser wird genutzt und in die Trinkwassertanks der Raumfähre gepumpt. Die freiwerdende Wärme wird in einem Kühlkreislauf abgeführt und dient der Vorheizung der Reaktionsgase.

Die Brennstoffzellensysteme im Space Shuttle waren jedoch längst nicht die erste Anwendung dieser Technologie in der Raumfahrt: Bereits bei den amerikanischen Gemini-Missionen der 60er Jahre waren Brennstoffzellen an Bord. Die PEMs lieferten 1 Kilowatt und hatten verglichen mit heutigen Systemen gigantische Ausmaße. Doch in punkto Leistung und Gewicht waren sie Batterien immer noch überlegen, zumal auch damals schon das freiwerdende Wasser genutzt werden konnte.

Ausgereifter waren die Systeme bereits in dem darauf folgenden Raumfahrtprogramm Apollo. Erstmals wurden dort AFC-Brennstoffzellen eingesetzt. Die drei in Serie geschalteten Zellen in den Apollo-Raumfähren leisteten maximal 2.300 Watt. Im Verhältnis zum heutigen Stand der Technik waren die Systeme dennoch Giganten: Ihre Leistungsdichte betrug nur ein Zehntel der im Space Shuttle eingesetzten Zellen.

Trotz dieser Entwicklungsschritte: Eine wesentliche Triebfeder für die Brennstoffzellenentwicklung ist die Raumfahrt nie gewesen – nicht nur, weil die AFC-Systeme für den breit angelegten Gebrauch kaum geeignet sind, sondern auch, weil es sich bei den Zellen um Einzelanfertigungen handelte, die auf die ganz speziellen Bedürfnisse zugeschnitten waren. Die Herausforderungen der Brennstoffzellenentwicklung liegen heute in ganz anderen Bereichen: alltagstaugliche Systeme in großen Stückzahlen und damit möglichst billig zu produzieren.

Ulrich Dewald | Initiative Brennstoffzelle
Weitere Informationen:
http://www.initiative-brennstoffzelle.de/de/ibz/live/nachrichten/detail/107.html

Weitere Berichte zu: AFC Brennstoffzelle Raumfahrt Sauerstoff Space

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Mit Sensoren gegen Falschfahrer: Jungforscher bringen Frühwarnsystem zur Marktreife
21.08.2018 | Universität des Saarlandes

nachricht IHP-Technologie darf in den Weltraum fliegen
20.08.2018 | IHP - Leibniz-Institut für innovative Mikroelektronik

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

21.08.2018 | Physik Astronomie

Bedeutung des „Ozeanwetters“ für Ökosysteme

21.08.2018 | Biowissenschaften Chemie

Auf dem Weg zur personalisierten Medizin

21.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics