Radioaktive Abfälle: Lagerzeiten deutlich verkürzen

Global gesehen ist in den nächsten Jahrzehnten mit einem massiven Ausbau der Kernenergie zu rechnen, so dass der radioaktive Abfall weiter anwachsen wird.

Eine vielversprechende Möglichkeit, die extrem langen Halbwertszeiten von einigen Millionen Jahren auf wenige Hundert Jahre zu verkürzen, ist die Transmutation: Durch die Bestrahlung mit schnellen Neutronen können Transurane wie Plutonium in Elemente mit einer kürzeren Halbwertszeit umgewandelt werden. Physiker des Instituts für Angewandte Physik der Goethe-Universität beteiligten sich führend an der Konstruktion eines Beschleunigers, der die dazu benötigten Neutronen auf wirtschaftliche Weise erzeugt. Darüber berichtet Privatdozent Dr. Holger Podlech in der soeben erschienenen Ausgabe des Wissenschaftsmagazins Forschung Frankfurt /3/2011).

Unter den radioaktiven Abfällen stellen die Transurane das größte Gefahrenpotenzial dar: Sie sind chemisch hochgiftig und ihre Strahlung zerstört biologisches Gewebe. Unbehandelte abgebrannte Brennelemente müssen dementsprechend für Millionen von Jahren endgelagert werden. Allerdings gibt es weltweit kein einziges genehmigtes Endlager, noch ist die gesellschaftliche Akzeptanz dafür gegeben. Eine Lösung könnte die Transmutation sein: Bestrahlt man nämlich die Transurane mit schnellen Neutronen, werden sie in wesentlich kurzlebigere Isotope umgewandelt.

„Neutronen sind gewissermaßen der Schlüssel zur modernen Alchimie. Wir wandeln nicht Metalle in Gold um, sondern hochtoxische in weniger toxische radioaktive Elemente“, erläutert Privatdozent Holger Podlech. „Die sind dann nicht gefährlicher als natürlich vorkommendes Uranerz.“ Die Lagerzeit kann entsprechend um einen Faktor 10.000 verkürzt werden, was die Zeitskala von geologischen zu historischen Dimensionen verschiebt. Darüber hinaus können die transmutierten radioaktiven Elemente erneut zur Energiegewinnung genutzt werden, was einen nachhaltigen Umgang mit den knapper werdenden Ressourcen ermöglicht.

Wie ein geeigneter Reaktor samt Beschleuniger für die Transmutation beschaffen sein muss, ist in den letzten Jahren im Rahmen der Europäischen Studie EUROTRANS untersucht worden. Seit März 2011 laufen die dreijährigen Vorbereitungen für den Bau der Demonstrationsanlage im belgischen Mol. Es handelt sich um einen supraleitenden Linearbeschleuniger von 250 Metern Länge und einer Beschleunigungsspannung von 600 Millionen Volt. Das Institut für Angewandte Physik der Goethe-Universität ist als weltweit führendes Labor für Niederenergie-Beschleuniger verantwortlich für die Entwicklung des 17 Mega-Elektronen-Volt Injektors, in dem die Neutronen erzeugt werden. Dieses MYRRHA (Multi Purpose Hybrid Reactor for High Tech Applications) genannte Projekt mit Baukosten von einer Milliarde Euro soll die großtechnische Machbarkeit der Transmutation zeigen. Eine zukünftige industrielle Transmutationsanlage (EFIT, European Facility for Industrial Transmutation) hätte etwa die zehnfache Leistung und könnte den Abfall von bis zu zehn Kernkraftwerken gleichzeitig entsorgen.

In Internet: http://www.forschung-frankfurt.uni-frankfurt.de/2011/index.html
Informationen: Privatdozent Dr. Holger Podlech, Institut für Angewandte Physik, Campus Riedberg, Tel: (069) 798- 47453; H.Podlech@iap.uni-frankfurt.de

Kostenlose Bestellung der Printausgabe per Mail an: ott@pvw.uni-frankfurt.de

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit.

Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Media Contact

Dr. Anne Hardy idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wie Lymphknoten mit Blut versorgt werden

Droht eine Infektionskrankheit, läuft unser Immunsystem auf Hochtouren: Es setzt Antikörper, weiße Blutkörperchen und Fresszellen in Bewegung. Doch wie das funktioniert, ist noch nicht komplett verstanden – etwa bei den…

Programmierbare Laserstrahlen sparen mehr als 30 Prozent Energie

Neue Freiheiten eröffnen sich in der Lasermaterialbearbeitung: Mit einem Flüssigkristall-Modulator lässt sich das Strahlprofil eines Lasers zeitlich hochaufgelöst frei programmieren. Der Strahl kann auch in identische Kopien aufgeteilt werden. Zusammen…

Soziale Kompetenz für autonome Autos

KI-System deutet Fußgängerverhalten, um Interaktion zwischen Auto und Passanten zu ermöglichen. Autofahren ist mehr als Gas geben, lenken und bremsen: Eine entscheidende Rolle spielt die Verständigung mit anderen Verkehrsteilnehmern. Das…

Partner & Förderer