Oberflächenphysik: Weg von der Insel

Bei heterogen katalysierten Reaktionen, die an der Grenzfläche zwischen einem Festkörper und der Gasphase ablaufen, müssen die gebildeten Produkte am Ende von der Oberfläche des Festkörpers desorbieren. Dies ist zum Beispiel beim Abgaskatalysator eines Autos der Fall.

Einer Gruppe von Wissenschaftlern um Professor Joost Wintterlin von der LMU, Professor Sebastian Günther von der TUM und Dr. Andrea Locatelli vom Syncrotron Elettra in Triest ist es erstmals gelungen, einen solchen Desorptionsvorgang mikroskopisch sichtbar zu machen. Ihre Ergebnisse erklären, warum bisherige Berechnungen von Desorptionsraten häufig fehlerhaft sind. Darüber berichten sie aktuell in der Fachzeitschrift Nature Communications.

Bei der heterogenen Katalyse werden Moleküle durch eine chemische Reaktion auf der Oberfläche eines Metalls, eines Oxids oder eines anderen Festkörpers gebildet und verlassen dann die Oberfläche. Bisher galt dieser letzte Schritt, im Gegensatz zu den komplizierten anderen Oberflächenprozessen, als relativ einfach.

Die Moleküle nehmen demnach thermische Energie vom Festkörper auf und desorbieren, sobald diese Energie die Bindungsenergie an die Oberfläche übersteigt, in einem rein statistischen Prozess, der nur von der Anzahl der Moleküle abhängt. „In einer Vielzahl von Fällen stimmen die nach diesem Modell berechneten Desorptionsraten aber nicht mit den gemessenen überein“, sagt Joost Wintterlin.

Darstellung im Nanometerbereich

Günther, Wintterlin und ihre Kollegen konnten mit ihren Untersuchungen nun zeigen, dass die räumliche Verteilung der Moleküle bei der Desorption wichtig ist. Für ihre Experimente nutzte das Forscherteam ein sogenanntes LEEM (LEEM steht für „low energy electron microscopy“), mit dem Oberflächen mit einer Auflösung im Nanometerbereich abgebildet werden können.

Das LEEM funktioniert ähnlich wie ein normales Elektronenmikroskop, nur werden die energiereichen Elektronen, kurz bevor sie auf die Probenoberfläche treffen, auf niedrige Energien abgebremst. Mit dieser Mikroskopietechnik gelang es den Forschern, die Desorption von Sauerstoff von einer Silberoberfläche zu verfolgen.

„Es zeigte sich, dass die Sauerstoffschicht bei der Desorption in viele kleine Inseln zerfällt“, sagt Sebastian Günther. Die Atome desorbieren ausschließlich von den Rändern dieser Inseln, deren Größenverteilung von der Vorbehandlung des Silberkristalls abhängt. „Solche Effekte erklären die scheinbar unverständliche Desorptionsrate. Sie spielen vermutlich auch bei vielen anderen Desorptionsprozessen von Oberflächen eine Rolle und könnten unsere Vorstellungen von den Vorgängen auf Katalysatoroberflächen verändern“, sagt Günther.

Publikation:
Sebastian Günther, Tevfik Onur Menteş, Miguel Angel Niño, Andrea Locatelli, Sebastian Böcklein, Joost Wintterlin
Desorption kinetics from a surface derived from direct imaging of the adsorbate layer
In: Nature Communications Mai 2014, doi:10.1038/ncomms4853

http://physchem.cup.uni-muenchen.de/wintterlin/index.php?id=4

Ansprechpartner für Medien

Luise Dirscherl idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Blackbox-Verfahren für superschnelle Ergebnisse

Die elektronische Struktur von komplexen Molekülen und ihre chemische Reaktivität können mit Hilfe der Methode der resonanten inelastischen Röntgenstreuung (RIXS) an BESSY II untersucht werden. Allerdings erfordert die Auswertung von…

Die Geburtsstätten von Planeten der kleinsten Sterne

Seit kurzem finden Wissenschaftler in den Scheiben um junge Sterne ringförmige Strukturen, die auf Planetenbildung hindeuten. Astronomen unter der Leitung von Nicolas Kurtovic vom Max-Planck-Institut für Astronomie haben jetzt ähnliche…

TU Graz liefert Know-how für effizientes Flugtriebwerk von General Electrics

Im EU-Projekt TURANDOT untersuchten Forschende der TU Graz eine haifischhautähnliche Beschichtung für Triebwerksschaufeln und verfolgten den Verlauf der Kühlluft im Triebwerk. So machen sie Flugzeuge sparsamer, kostengünstiger und leiser. Ein…

Partner & Förderer