Gibt es ein Tempolimit für das Denken?

Abb.: Max-Planck-Forscher modellieren Hirnstrukturen als neuronale Netzwerke. Ihre neuesten Befunde zeigen, dass die komplizierte Verschaltungs-Struktur dieser Netzwerke zu einem Tempolimit für die Koordination der Netzwerkaktivität führt. <br> <br>Bild: Max-Planck-Institut für Strömungsforschung

Göttinger Max-Planck-Forscher haben Geschwindigkeitsbeschränkung in komplexen neuronalen Netzwerken entdeckt

Die neuronalen Netzwerke im Gehirn bestehen aus einer Vielzahl ähnlicher Komponenten, die in scheinbar zufälliger Weise untereinander verbunden sind. Die Nervenzellen kommunizieren miteinander durch den Austausch von Pulsen über ihre Verbindungsstellen, die Synapsen. Doch anders als Atome in einem Kristall, die in einem regelmäßigen Gitter angeordnet sind, wachsen die synaptischen Verbindungen zwischen Nervenzellen hochgradig unregelmäßig. Neuro-Physiker des Göttinger Max-Planck-Instituts für Strömungsforschung und der Fakultät für Physik der Universität Göttingen sind jetzt der Frage nachgegangen, wie schnell sich die zahlreichen Komponenten eines komplexen Netzwerkes überhaupt koordinieren bzw. synchronisieren können. In Netzwerken pulsgekoppelter Oszillatoren, also einfachen Modellen neuronaler Netzwerke im Gehirn, entdeckten sie, dass die Geschwindigkeit der Synchronisation zwischen Nervenzellen eine obere Grenze hat, die von der Dichte ihrer Verschaltungen abhängt. (Physical Review Letters, 20. Februar 2004). Danach kann auch für die Informationsverarbeitung im Gehirn und unser Denken und Handeln eine Art Maximalgeschwindigkeit bestehen.

Um zu klären, welchen Einfluss die Struktur eines Netzwerks auf das kollektive Verhalten seiner Elemente hat, verwendeten die Göttinger Forscher die Theorie der so genannten Zufalls-Matrizen. Begründet durch Arbeiten von Eugene Wigner, der seinerzeit über Korrelationen zwischen Energieniveaus in Atomkernen arbeitete, wurde die Theorie der Zufalls-Matrizen seit den 1950er Jahren ausführlich untersucht. Seither hat sich der Anwendungsbereich dieser Theorie ständig erweitert und umfasst heute viele verschiedenartige Phänomene, die von quantenmechanischen Aspekten des Chaos bis hin zu Preis-Fluktuationen auf Finanzmärkten reichen.

Marc Timme, Fred Wolf und Theo Geisel haben nun gezeigt, dass die Theorie der Zufalls-Matrizen auch dafür geeignet ist, die Dynamik in komplexen Netzwerken zu analysieren. Dieses neuartige Herangehen erlaubt es, systematisch zu erforschen, welche Auswirkungen die Topologie, also die innere Struktur eines Netzwerks, auf seine Dynamik hat. Mit Hilfe der Zufalls-Matrix-Theorie haben die Göttinger Wissenschaftler mathematische Ausdrücke gefunden, mit deren Hilfe sich präzise bestimmen lässt, wie schnell Neurone ihre Aktivität koordinieren können, also auch, wie schnell sich neuronale Netzwerke synchronisieren können. Diese mathematischen Ausdrücke sagen die Abhängigkeit der Synchronisationsgeschwindigkeit von Eigenschaften einzelner Neurone wie auch von der Netzwerktopologie genau vorher.

Wie intuitiv zu erwarten war, fanden die Max-Planck-Forscher, dass Neurone sich umso schneller synchronisieren, je stärker die synaptischen Verbindungen zwischen ihnen sind. Überraschend zeigt diese Studie aber auch, dass es eine Geschwindigkeitsbeschränkung für die Synchronisation des Netzwerks gibt: Auch bei beliebig starken Wechselwirkungen kann die Synchronisationsgeschwindigkeit nicht schneller sein als eine maximale Grenzgeschwindigkeit. Dieses Tempolimit wird durch die komplizierte Verschaltungs-Struktur des Netzwerkes festgelegt und würde nicht auftreten, wenn jedes Neuron mit jeder anderen Nervenzelle in dem Netzwerk verbunden wäre. Diese Grenze für die Synchronisationsgeschwindigkeit beruht darauf, dass sogar dann, wenn nur ein einziges Neuron vom vollständig synchronen Verhalten des neuronalen Netzes abweicht, diese Information über das gesamte Netzwerk transportiert werden muss, bevor es wieder zu einer vollständigen Synchronisation kommt.

„Unter der Voraussetzung, dass diese Analyse die Schlüsselmechanismen zur Koordination der Aktivität in neuronalen Netzwerken des Gehirns qualitativ korrekt beschreibt, bedeutet dies, dass die Geschwindigkeit neuronaler Informationsverarbeitung, also unser Denken und Handeln, erheblich durch die Verschaltungs-Struktur des Netzwerks beschränkt wird“, sagt Prof. Theo Geisel, Direktor am Max-Planck-Institut für Strömungsforschung. „So hat unsere Analyse gezeigt, dass in Zufallsnetzwerken die Synchronisationsgeschwindigkeit nur sehr langsam mit der mittleren Anzahl von Verbindungen pro Neuron zunimmt. Das bedeutet also, dass Hirn-Areale, in denen ein schneller Informationsaustausch essentiell ist, hochgradig vernetzt sein müssen, um ihre Funktion adäquat erfüllen zu können.“

Originalveröffentlichung:

Marc Timme, Fred Wolf, Theo Geisel
Topological Speed Limits to Network Synchronization

Weitere Informationen erhalten Sie von:

Dr. Marc Timme
Max-Planck-Institut für Strömungsforschung, Göttingen
Tel.: 0551 5176-440
Fax: 0551 5176-409
E-Mail: timme@chaos.gwdg.de

Media Contact

Dr. Andreas Trepte Max-Planck-Gesellschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Physiker Professor Simon Stellmer von der Universität Bonn beim Justieren eines Lasers, der für Präzisionsmessungen eingesetzt wird.

Simon Stellmers GyroRevolutionPlus erhält ERC-Zuschuss von 150 000 € für Katastrophenwarnungen

Europäischer Forschungsrat fördert Innovation aus der Physik an der Uni Bonn „Mit GyroRevolutionPlus verbessern wir die Messgenauigkeit von Ringlaserkreiseln, sogenannten Gyroskopen, mit denen wir langsame und tiefliegende Erdrotationen oder auch…

Unterschiedlich regulierte kleine RNAs aus Blut oder Haut sind mögliche Biomarker, die in Zukunft helfen könnten, Fibromyalgie schneller und besser zu diagnostizieren und damit unter anderem die Stigmatisierung abzubauen.

Objektive Diagnose von Fibromyalgie: Neue Innovationen Erklärt

Prof. Dr. Nurcan Üçeyler und Dr. Christoph Erbacher von der Neurologischen Klinik des Uniklinikums Würzburg (UKW) haben ihre neuesten Forschungsergebnisse zum Fibromyalgie-Syndrom (FMS) in der Fachzeitschrift Pain veröffentlicht. Sie fanden…

Links: EHT-Bilder von M87* aus den Beobachtungskampagnen 2018 und 2017. Mitte: Beispielbilder aus einer generalrelativistischen magnetohydrodynamischen (GRMHD) Simulation zu zwei verschiedenen Zeiten. Rechts: Dieselben Simulations-Schnappschüsse, unscharf gemacht, um der Beobachtungsauflösung des EHT zu entsprechen.

Die neueste M87-Studie des EHT bestätigt die Drehrichtung des Schwarzen Lochs

Erster Schritt auf dem Weg zu einem Video vom Schwarzen Loch FRANKFURT. Sechs Jahre nach der historischen Veröffentlichung des ersten Bildes eines Schwarzen Lochs stellt die Event Horizon Telescope (EHT)…