Warum die Millenniumsbrücke ins Schwingen geriet

Internationales Team von Physikern erklärt selbstorganisierte Schwingungen der Londoner Millenniumsbrücke – In Nature veröffentlichte Arbeit unterstützt Ingenieure bei der Konstruktion von Fußgängerbrücken


Als im Juni 2000 die ersten Besucher auf die neue Fußgängerbrücke strömten, die im Herzen Londons die Themse überspannt, wurde die Freude über die elegant geschwungene Struktur des Bauwerks durch dessen deutlich spürbare seitliche Schwingung getrübt. Der Ursprung der Schwingung blieb unerklärlich und führte zu einer fast zweijährigen Sperrung und zu Nachrüstungen an der Millenniumsbrücke.

Nun aber hat ein Forscherteam unter Beteiligung des Marburger Physikers Professor Dr. Bruno Eckhardt im britischen Fachjournal Nature (Nature Brief Communications, 3. November 2005, S. 43 f.) im Modell nachgewiesen, dass die Schwingung durch die unwillkürliche Reaktion der Fußgänger auf die Bewegung der Brücke verstärkt wird. Sobald die ersten Fußgänger die laterale Schwingung spüren, passen sie, ähnlich wie auf einem Schiff, ihre Schritte der seitlichen Bewegung an, verstärken so die Schwingung und ziehen weitere Passanten in die synchronisierte Bewegung hinein die Brücke gerät in selbstorganisierte Schwingungen.

In Übereinstimmung mit Untersuchungen an der Brücke selbst zeigen die Rechnungen des Wissenschaftlerteams, dem neben Eckhardt auch Forscher von der Cornell University (New York), der britischen University of Cambridge und der University of Maryland angehören, dass die synchronisierte Bewegung nur ab einer gewissen Anzahl von Fußgängern auftritt und durch stärkere Dämpfung unterdrückt werden kann.

Für ihre Berechnungen kombinierten die Forscher Methoden der mathematischen Biologie, wie sie zur Beschreibung von synchronisierten Oszillationen etwa in Gehirnzellen und Glühwürmchen dienen, mit der Physik der Phasenübergänge und eröffneten so neue Zugänge zur Stabilitätsbetrachtung von Brücken.

Im Fall der Millenniumsbrücke mussten Ingenieure im nachhinein Stoßdämpfer anbringen, um die Schwingungen zu verhindern. Dank der nun vorliegenden Arbeit können sie dieses Problem, das weltweit bereits bei verschiedenen Brücken aufgetreten ist, schon in der Konstruktionsphase in den Griff bekommen.

Kontakt
Professor Dr. Bruno Eckhardt
Philipps-Universität Marburg, Fachbereich Physik, Renthof 5,
35032 Marburg
Tel.: (06421) 28 21316
E-Mail: bruno.eckhardt@physik.uni-marburg.de

Media Contact

Thilo Körkel idw

Weitere Informationen:

http://www.uni-marburg.de

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Atomkern mit Laserlicht angeregt

Dieser lange erhoffte Durchbruch ermöglicht neuartige Atomuhren und öffnet die Tür zur Beantwortung fundamentaler Fragen der Physik. Forschenden ist ein herausragender Quantensprung gelungen – sprichwörtlich und ganz real: Nach jahrzehntelanger…

Wie das Immunsystem von harmlosen Partikeln lernt

Unsere Lunge ist täglich den unterschiedlichsten Partikeln ausgesetzt – ungefährlichen genauso wie krankmachenden. Mit jedem Erreger passt das Immunsystem seine Antwort an. Selbst harmlose Partikel tragen dazu bei, die Immunantwort…

Forschende nutzen ChatGPT für Choreographien mit Flugrobotern

Robotik und ChatGPT miteinander verbinden… Prof. Angela Schoellig von der Technischen Universität München (TUM) hat gezeigt, dass Large Language Models in der Robotik sicher eingesetzt werden können. ChatGPT entwickelt Choreographien…

Partner & Förderer