Verdrehtes WSe₂ als hochflexible Plattform für die Untersuchung exotischer Phänomene

Schema der verdrehten Doppelschicht WSe2, bei der eine korrelierte Isolatorphase und ein möglicher supraleitender Übergang in einem relativ großen Bereich kleiner Verdrehungswinkel entstehen. Jörg Harms, MPSD

Auf der Suche nach Supraleitern, die Elektrizität widerstandslos transportieren, erforschen viele Wissenschaftler nun zweidimensionale Materialien, um ein besseres Verständnis der Hochtemperatur-Supraleitung sowie anderer exotischer Materialphasen zu erlangen.

Diese aus nur einer Atomlage bestehenden Substanzen können überraschende neue Eigenschaften entwickeln, wenn sie aufeinandergelegt werden.

Eine der einfachsten und interessantesten Methoden ist es, zwei Schichten desselben Materials mit einer leichten Drehung zu stapeln. Je nach dem Verdrehungswinkel löst diese Schichtung bemerkenswerte Veränderungen in den elektronischen Materialeigenschaften aus.

Twisted Bilayer-Graphen kann beispielsweise bei einer überraschend hohen Temperatur supraleitende Eigenschaften entwickeln – eine Eigenschaft, die es in seinem Normalzustand nicht besitzt.

Bisherige Studien zeigen, dass die niederenergetischen elektronischen Zustände in Twisted Bilayer-Graphen stark lokalisiert sind und ihre kinetische Energieskala deutlich gedämpft wird. Dadurch gewinnen die Elektron-Elektron-Korrelationen an Bedeutung, so dass das System bei geringer Dotierung in Mott-ähnliche Isolator- und Supraleiterphasen getrieben wird, deren Phasendiagramme denen der Hoch-Tc-Supraleiter ähneln.

Twisted Bilayer-Graphen bietet daher eine vielversprechende Plattform für die Untersuchung exotischer korrelierter Phänomene, einschließlich der Hochtemperatur-Supraleitung. Seine einfache Struktur und leichte Zugänglichkeit sind weitere Vorteile.

Dennoch hat Twisted Bilayer-Graphen auch seine Grenzen. Die starke Unterdrückung der kinetischen Energieskala erfolgt aufgrund der speziellen elektronischen Struktur nur bei bestimmten Verdrehungen – den sogenannten magischen Winkeln (ab etwa 1,1°).

Die faszinierenden, stark korrelierten Phänomene nur sehr nahe an diesem magischen Winkel beobachtet. Dies ist eine Herausforderung für die experimentelle Umsetzung unter realen Laborbedingungen und schränkt die Abstimmbarkeit der Studie ein.

Das internationale Forschungsteam vom MPSD, der RWTH Aachen, der Columbia University, des Center for Computational Quantum Physics am Flatiron Institute (beide in den USA), der Nanjing University in China und des National Institute for Materials Science in Japan wollte die Eigenschaften dieser atomar dünnen Materialien neu betrachten.

Die Wissenschaftler berichten, dass ähnliche Phänomene bei dem verdrehten, doppelschichtigen Übergangsmetalldichalkogenid WSe₂ auftreten können, und zwar ohne die starken Einschränkungen der magischen Winkel.

Das Team maß die Transporteigenschaften der verdrehten Doppelschicht WSe₂ bei niedrigen Temperaturen mit variierenden externen Magnet- und Verschiebungsfeldern. Sie fanden die Signaturen der korrelierten Isolatorphasen in Proben mit Verdrehungswinkeln zwischen 4° und 5,1°.

Diese korrelierten Phasen sind in hohem Maße mit Verdrehungswinkeln und externen Verschiebungsfeldern abstimmbar, die im Sinne eines effektiven Hubbard-Modells auf einem zweidimensionalen Dreiecksgitter rationalisiert werden können.

In der Probe mit einem Verdrehungswinkel von 5,1° werden bei einer Temperatur unter 3K Null-Widerstandstaschen in der Nähe der korrelierten Isolatorphase beobachtet, was auf einen möglichen Übergang in einen supraleitenden Zustand hinweist. Diese neuen Erkenntnisse der Experimentalgruppen von Cory Dean und Abhay Pasupathy an der Columbia University wurden durch umfangreiche erste Prinzipien-Berechnungen und Modellierungen von Lede Xian und Ángel Rubio in der Theorieabteilung des MPSD, sowie von Martin Claassen am Flatiron-Institut der Simons Foundation und Dante Kennes an der RWTH Aachen erläutert.

Diese Studie zeigt, dass WSe₂ eine hochgradig flexible Plattform für die Entwicklung elektronischer Bandstrukturen ist. Das Material erlaubt die detaillierte Untersuchung stark korrelierter Phänomene, die sonst unzugänglich bleiben würden, und bietet großes experimentelles und theoretisches Potenzial.

Insbesondere ermöglicht das System eine einzigartige abstimmbare Festkörper-Realisierung eines Ein-Band-Hubbard-Modells auf einem Dreieckssystem, bei dem Bandbreite und Dotierung unabhängig voneinander variiert werden können.

„Daher stellt WSe₂ ein vielversprechendes alternatives Material für die Erforschung der Supraleitung und anderer exotischer Phänomene wie Exzitonkondensate, Spinflüssigkeiten und magnetische Ordnung dar“, erklärt der Direktor der MPSD-Theorieabteilung, Ángel Rubio. „Es eröffnet neue Möglichkeiten zur Untersuchung des Zusammenspiels zwischen starken Interaktionen und Frustration.“

Lede Xian, MPSD-Autor: lede.xian@mpsd.mpg.de
Jenny Witt, MPSD PR und Kommunikation: jenny.witt@mpsd.mpg.de

https://www.nature.com/articles/s41563-020-0708-6

https://www.mpsd.mpg.de/447216/2020-06-xian-wse2

Media Contact

Jenny Witt Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer