Rekord in der Hochdruckforschung erzeugt bisher unbekannte Materiezustände

Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky in Bayreuth an einem Mikromanipulator, mit dem Proben für die Untersuchung in zweistufigen Diamantstempelzellen vorbereitet werden. Foto: Pressestelle Universität Bayreuth
Die neuen Erkenntnisse, an denen in Deutschland auch Wissenschaftler am Deutschen Elektronen-Synchrotron (DESY) in Hamburg mitgewirkt haben, können das Verständnis von Strukturen und Prozessen in extrem komprimierter Materie weiter voranbringen und das Design hochbelastbarer Funktionsmaterialien fördern. Sie können zudem die Astrophysik bei der Modellierung des Inneren von großen Planeten und Sternen unterstützen.
Osmium unter Hochdruck
Osmium ist ein Platinmetall, das in der Erdkruste sehr selten vorkommt und sich durch eine außerordentliche Härte auszeichnet. In keinem anderen chemischen Element ist das Verhältnis von Masse zu Volumen derart hoch. Und kein anderes Element ist so widerstandsfähig gegenüber Kompressionsdrücken.
Eine internationale Forschungsgruppe aus Deutschland, Frankreich, Schweden, den Niederlanden und den USA hat Eigenschaften und Strukturen dieses ungewöhnlichen Metalls jetzt erstmals bei stetig steigenden Drücken analysiert. Zweistufige Diamantstempelzellen machten es möglich, den Druck auf eine Rekordhöhe von mehr als 770 Gigapascal zu steigern. In keinem anderen Labor der Welt wurde bisher bei Raumtemperatur ein derart hoher Kompressionsdruck erzielt – mehr als doppelt so hoch wie der Druck, der im inneren Erdkern herrscht.
Prof. Dubrovinskaia und Prof. Dubrovinsky in Bayreuth haben die Forschungsarbeiten koordiniert. Erst vor wenigen Jahren wurden von ihnen die leistungsstarken Stempelzellen entwickelt. Diese enthalten zwei Stempel aus Nanodiamanten, deren halbrunde Köpfe einander exakt gegenüber liegen. Dazwischen wird die Materialprobe platziert. Die Stempel haben jeweils einen Durchmesser von rund 10 bis 20 Mikrometern, also zwischen 0,01 bis 0,02 Millimetern. Aufgrund der winzigen Korngröße der Nanodiamanten, die unterhalb von 50 Nanometern liegt, sind sie extrem belastbar.
Ein bisher unbekannter Effekt:
Extremer Druck beeinflusst das Verhalten von Elektronen
Während der enormen Steigerung des Kompressionsdrucks blieb die hexagonale Grundstruktur des Osmiums durchweg erhalten. Bei rund 150 Gigapascal aber trat erstmals eine Anomalie im Aufbau der kristallinen Elementarzellen auf. Diese Strukturänderung ließ sich mit bekannten physikalischen Vorgängen erklären. Doch eine weitere Anomalie, die in den Elementarzellen bei etwa 440 Gigapascal beobachtet werden konnte, überraschte die Forscher. „Hier führen konventionelle Erklärungen nicht weiter. Vielmehr sieht es so aus, als ob die Strukturänderung durch bisher unbekannte Verhaltensweisen der Kernelektronen verursacht wird“, erklärt Prof. Dubrovinskaia.
Kernelektronen befinden sich in unmittelbarer Nähe der Atomkerne und sind an chemischen Bindungen nicht beteiligt. Dies unterscheidet sie von den sogenannten Valenzelektronen, die von den Atomkernen deutlich weiter entfernt sind. Valenzelektronen lösen sich von der räumlichen Zugehörigkeit zu ihren jeweiligen Atomen und bilden ‚elektronische Bänder‘, so dass chemische Bindungen zwischen verschiedenen Atomen entstehen. Unter den hohen, stetig ansteigenden Kompressionsdrücken bleiben die Kernelektronen aber nicht länger in ihren ursprünglichen, klar unterscheidbaren Zuständen. Sie beginnen miteinander zu interagieren – und zwar, wie theoretische Berechnungen zeigen, bei 392 Gigaspascal. „Die Strukturänderungen des Osmiums, die wir bei rund 440 Gigapascal im Experiment beobachtet haben, lassen sich daher mit Interaktionen der Kernelektronen gut erklären“, so Prof. Dubrovinskaia.
Eine vielversprechende Richtung der Materialforschung
Die Autoren des „Nature“-Beitrags schlagen für die sehr ungewöhnlichen Interaktionen der Kernelektronen, deren Zustände dabei ineinander übergehen, die Bezeichnung „Core Level Crossing Transition“ vor. „Hier eröffnet sich ein vielversprechendes Gebiet für weitere Untersuchungen“, meint Prof. Dubrovinsky. „Denn wenn extrem hohe Drücke imstande sind, sogar in einem innerlich sehr stabilen Metall wie Osmium ein neuartiges Elektronenverhalten auszulösen und so die Materialstrukturen zu ändern, lassen sich möglicherweise noch andere bisher unbekannte Materiezustände erzeugen. Nicht zuletzt deshalb ist die Hochdruckforschung, wie wir sie hier an der Universität Bayreuth betreiben, ein vielversprechender Forschungszweig“, fügt der Bayreuther Wissenschaftler hinzu. Er hält es für durchaus möglich, dass die dabei gewonnenen Erkenntnisse bei der Entwicklung neuer, für Extrembedingungen geeigneter Funktionsmaterialien genutzt werden können.
Die neuen Forschungsergebnisse belegen die Bedeutung internationaler Kooperationen in der Materialwissenschaft. Denn an den Strukturuntersuchungen der Osmium-Proben waren drei der weltweit leistungsstärksten Teilchenbeschleuniger beteiligt: das Deutsche Elektronen-Synchrotron (DESY) in Hamburg, die European Synchrotron Radiation Facility (ESRF) in Grenoble und die Advanced Photon Source (APS) am Argonne National Laboratory in Chicago.
Veröffentlichung:
Leonid Dubrovinsky, Natalia Dubrovinskaia, et al., The Most Incompressible Metal Osmium at Static Pressures above 750 GPa,
Nature 2015, 24 August 2015 (Advance Online Publication), DOI: 10.1038/nature14681
Kontakt (vorzugsweise per E-Mail):
Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Leonid.Dubrovinsky@uni-bayreuth.de
Telefon: +49 (0)921-55 3736 oder 3707
Prof. Dr. Natalia Dubrovinskaia
Laboratorium für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Natalia.Dubrovinskaia@uni-bayreuth.de
Telefon: +49 (0)921-55 3880 oder 3881
Media Contact
Weitere Informationen:
http://www.uni-bayreuth.de/Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge

Studie zu Roboterarm stößt auf internationales Interesse
Im Bachelorstudium Automatisierungstechnik und Robotik der Hochschule Coburg wirken die Studierenden an aktueller Forschung mit. Im Rahmen eines Moduls beschäftigte sich eine Studierendengruppe damit, wie sich die Vermenschlichung von Maschinen…

Greix – Preisrückgang bei Eigentumswohnungen trifft vor allem Bestand
Neubaupreise relativ stabil. Ein Vergleich der Preisentwicklung von Eigentumswohnungen nach Baujahr in Deutschlands größten Metropolen zeigt: Ausgehend von den Höchstständen sind die Preise für Neubauten bislang nur verhältnismäßig moderat zurückgegangen,…

KI für die präzise Beobachtung von Pflanzen in der Natur
In den Pflanzenwissenschaften hilft künstliche Intelligenz (KI), eine mit herkömmlichen Methoden unerreichbare Menge an Daten zu sammeln und zu analysieren. Forschende der Universität Zürich konnten mit Hilfe von Big Data,…