Höhere Materialeffizienz durch verbesserte Konstruktion mithilfe rechnergestützter Simulation

Die Materialkosten stellen im produzierenden Gewerbe den größten Kostenblock dar. Das Technologie-Institut für Metall & Engineering (TIME) in Wissen, eine der Forschungs- und Entwicklungseinrichtungen im Innnovationscluster Metall-Keramik-Kunststoff (IMKK), unterstützt kleine und mittelständische Unternehmen bei der Optimierung von Bauteilen mittels strukturmechanischer Simulation.

Neben Metallen können auch weitere Werkstoffe wie Kunststoffe oder Keramiken mithilfe der Finite-Elemente-Methode (FEM) analysiert werden, um die Materialeffizienz zu steigern.

„Mit rund 45 Prozent machen die Materialkosten den größten Anteil an den Gesamtproduktionskosten der metallverarbeitenden Unternehmen aus“, erklärt Dr. Ralf Polzin, Geschäftsführer des TIME. „Die Optimierung von Bauteilen bietet folglich enorme Einsparpotenziale für produzierende Unternehmen.“ Eine erhöhte Materialeffizienz ermöglicht es, mit geringerem beziehungsweise gleichem Materialeinsatz die gleiche beziehungsweise größere Menge an Produkten herzustellen. Dies wirkt sich nicht nur auf den Geschäftserfolg aus, sondern schont zusätzlich Umwelt und Ressourcen.

Das Technologie-Institut TIME unterstützt kleine und mittelständische Unternehmen (KMU) im nördlichen Rheinland-Pfalz, Bauteile oder Baugruppen durch die Simulation mithilfe der Software ANSYS zu optimieren. Untersucht werden nicht nur Konstruktionen aus Metall, wie Stahl und Aluminium, sondern auch aus Kunststoff oder Keramik. Unter mechanischen Lasten und/oder Temperaturlasten führt das TIME Verformungsanalysen, Festigkeitsnachweise oder Bauteiloptimierungen durch. Die Zielsetzung ist dabei stets die maximale Ausnutzung des vorhandenen Materials beziehungsweise die Einsparung von Material. Verformungs- und Festigkeitsanalysen einzelner Bauteile können mithilfe der Methode der Finiten Elemente (FEM) erstellt werden.

Verformungsanalyse: Gute Steifigkeit mit weniger Material
Mit der Verformungsanalyse prüft das TIME beispielsweise bei Maschinen- oder Untergestellen die Toleranzgrenze der Verformung von Bauteilen. Eine Verformungsanalyse wird ausschließlich dann durchgeführt, wenn bekannt ist, dass die innerhalb der Konstruktion auftretenden Spannungen unkritisch sind. Durch Betrachtung der Verformungen können konstruktive Merkmale von Anlagen oder Bauteilen, beispielsweise durch Änderung der Wanddicke oder geometrischen Verteilung des Materials, so modifiziert werden, dass mit möglichst wenig Material eine sehr gute Steifigkeit herbeigeführt werden kann.
Festigkeitsnachweis: Optimale Dimensionierung mittels Simulation
Weniger Materialeinsatz bedeutet im Regelfall weniger Bauteilkosten. Lange Zeit wurden Bauteile überschlägig und folglich mit notwendigen Sicherheitsaufschlägen konstruiert. Der steigende Kostendruck und zunehmende Wettbewerb zwingen Unternehmen zu einem möglichst effizienten Umgang mit dem vorhandenen Material. Die Dimensionierung von Bauteilen muss zwar den Sicherheitsanforderungen entsprechen, eine Überdimensionierung sollte jedoch vermieden werden. Mithilfe der FEM-Berechnung werden Bauteile in puncto sichere Konstruktionen auf ihre maximale Beanspruchung hin untersucht. Der Vorteil: Die kostenintensive Herstellung versagender oder überdimensionierter Prototypen entfällt im Normalfall.

Zur Überprüfung der Randbedingungen, wie Lagerungen und Lasten, wird das geometrische Modell der Konstruktion zunächst grob vernetzt, also in kleine Elemente aufgeteilt, die mittels gemeinsamer Knoten verbunden sind. Mit dieser groben, aber schnell durchlaufenden Berechnung können die kritischen Stellen mit den maximalen Spannungen des Bauteils ermittelt werden. Diese werden so lange mit feineren Elementen vernetzt, bis die ermittelten Ergebnisse hinreichend genau sind. Zeigt sich das konstruierte Bauteil als nicht ausreichend dimensioniert, muss eine Umkonstruktion erfolgen, um eine geringere Beanspruchung zu erzielen. Sind alle konstruktiven Lösungen ausgeschöpft oder soll die bestehende Konstruktion nicht abgeändert werden, besteht zudem die Möglichkeit, ein höherwertiges Material einzusetzen, welches die auftretenden Beanspruchungen ertragen kann.

Optimierung von Bauteilen
Bei der Optimierung von bestehenden Bauteilen oder Anlagen werden zunächst die Randbedingungen sowie der Bauraum festgelegt. Sind keine weiteren Beschränkungen vorhanden, empfiehlt sich eine Topologieoptimierung. Hierbei kann die Software bei vorgegebenem Bauraum und festgelegten Lasteinleitungspunkten sehr einfach die Elemente des vernetzten Bauteils, die am wenigsten zur Steifigkeit beitragen, entfernen. Die Topologieoptimierung bietet sich besonders für Konstruktionen an, die ein niedriges Gewicht erreichen sollen.

Oft existieren jedoch weitere Beschränkungen, zum Beispiel hinsichtlich der Materialauswahl oder der zu verwendenden Komponenten. Gestartet wird dann mit einer Ist-Analyse der vorhandenen Konstruktion. Diese Analyse zeigt die Schwachstellen sowie Bereiche, in welchen das Material nicht ausgenutzt wird. Das Bauteil kann optimiert und Material eingespart werden, indem in Bereichen hoher Beanspruchung das Material verstärkt wird, während es dort geschwächt wird, wo das Material nicht ausgenutzt wird. Iterative Schleifen der FE-Analyse und konstruktiven Anpassung erfolgen so lange, bis das Ergebnis zufriedenstellend ist.

Praxisabgleich ist unerlässlich
FEM-Berechnungen weisen einen sehr hohen Zuverlässigkeitsgrad auf. Um einen sicheren Abgleich mit der Praxis zu ermitteln, sollten zusätzlich zur Simulation stets Bauteilversuche erfolgen, bestenfalls mit Messungen am Bauteil zur Verifikation der Berechnungen. Das TIME ermittelt die Beanspruchung des Werkstoffs zusätzlich mit Dehnungsmessstreifen. Zahlreiche Projektbeispiele des TIME zeigen, dass sich die Analyse lohnt: Durch die Optimierung einer bestehenden Bauteilblechkonstruktion konnten 27 Prozent Material eingespart werden. Die Simulationsunterstützung bei der Neukonstruktion einer bestehenden Anlage realisierte 18 Prozent Materialeinsparung und die Optimierung einer Bauteilgruppe erreichte bei gleicher Baugröße eine 15 Prozent höhere Belastbarkeit.
Technologie-Institut für Metall & Engineering
Das Technologie-Institut für Metall & Engineering (TIME) wurde vom Land Rheinland-Pfalz, dem Landkreis Altenkirchen, der Universität Siegen sowie der Handwerkskammer Koblenz 2009 mit dem Ziel gegründet, kleine und mittelständische Unternehmen der Region bei Forschung und Entwicklung zu unterstützen. Aufgaben des Institutes sind die Forschung zu anwendungsrelevanten Fragestellungen, die Entwicklung neuer, innovativer Prozesse und Produkte für und mit den Unternehmen, die Beratung von Unternehmen sowie die Fort- und Weiterbildung von Fachkräften. Das TIME ist eine der Forschungs- und Entwicklungseinrichtungen im Innovationscluster Metall-Keramik-Kunststoff.

Pressemitteilung als PDF zum Download:
2013.12.03_TIME Materialeffizienz.pdf

Bildmaterial zum Download:
Bildquelle: Technologie-Institut für Metall & Engineering (TIME)

Bild 1 & 2: Mittels Modalanalyse ermittelte Verformungen durch die Eigenfrequenzen einer Riemenscheibe unter Belastung
TIME_Eigenfrequenz_1.jpg
TIME_Eigenfrequenz_2.jpg

Bild 3: Randbedingungen der Strukturanalyse einer Riemenscheibe
TIME_Randbedingungen_3.jpg

Bild 4: Berechnete Spannungen einer Riemenscheibe unter Belastung
TIME_Spannungen_4.jpg

Innovationscluster Metall-Keramik-Kunststoff (IMKK)
Metall, Keramik, Kunststoff, mineralische Baustoffe und Oberflächentechnik sind die Schwerpunktbranchen mit mehr als 250 Betrieben und 25.000 Arbeitsplätzen in den Landkreisen Altenkirchen, Neuwied und Westerwald. Mit der Einrichtung des Innovationsclusters Metall-Keramik-Kunststoff (IMKK) hat das Land Rheinland-Pfalz ein Instrument geschaffen, um regionale Innovationsprozesse zu moderieren und den Unternehmen einen raschen, fundierten und kontinuierlichen Zugriff auf Forschungsergebnisse von Hochschulen und anwendungsorientierten Forschungsinstituten sowie auf neue Produktionsverfahren und High-Tech-Werkstoffe zu ermöglichen. Der Innovationscluster Metall-Keramik-Kunststoff steht für das Ziel der rheinland-pfälzischen Wirtschaftspolitik, Herausforderungen wie die Energiewende, ein nachhaltiges, effizientes Ressourcenmanagement – die Green Economy – und die Gestaltung zukunftsfähiger Arbeitsplätze als Chance zu nutzen und so die internationale Wettbewerbsfähigkeit des Mittelstandes in den sich ständig wandelnden globalisierten Märkten zu stärken.

Diese Veröffentlichung wurde von der Europäischen Union aus dem Europäischen Fonds für regionale Entwicklung und vom Land Rheinland-Pfalz kofinanziert.

Pressekontakt
Gunilla Bischoff . VisCom360 . Carl-Zeiss-Str. 53 . 55129 Mainz .
Tel: (06131) 90622-66 . E-Mail: presse@viscom360.com . www.viscom360.com
Quelle
Innovationscluster Metall-Keramik-Kunststoff c/o TechnologieZentrum Koblenz . Universitätsstraße 3 . 56070 Koblenz

Media Contact

TechnologieZentrum Koblenz

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Endlich getrennt

Wissenschaftler der Universitäten Würzburg und Ottawa haben das jahrzehntealte Problem der Unterscheidung von einfachen und mehrfachen Lichtanregungen gelöst. In der Fachzeitschrift Nature stellen sie ihre neue Methode vor. Der Bau…

So entstehen Fussballmoleküle im Weltall

Seit Langem wird vermutet, dass im All sogenannte Fullerene und deren Abkömmlinge entstehen können – grosse Kohlenstoffmoleküle in Fussball-, Schüssel- oder Röhrchenform. Ein internationales Forschungsteam hat nun mit Unterstützung der…

Material, hör zu!

„Sieben, eins, neun, …“: Eine menschliche Stimme spricht Ziffern, ein Material erkennt diese zu rund 97 Prozent korrekt. Entwickelt wurde das System zur Mustererkennung von Physiker:innen der Universität Duisburg-Essen (UDE)…

Partner & Förderer