Empa-Forschende klären Reaktionsweg zur Herstellung graphenartiger Materialien

Rastertunnelmikroskop-Aufnahme mehrerer Nanographene sowie der zwei stabilen Zwischenprodukte auf einer Kupferoberfläche. Die Molekülmodelle zeigen das Nanographen (unten rechts) sowie die beiden Zwischenprodukte (oben und links). Der Durchmesser der Moleküle liegt in der Realität bei etwa einem Nanometer. Bild: Empa<br>

Elektronische Bauteile werden immer kleiner, sodass nach der Mikroelektronik bereits von der Nanoelektronik gesprochen wird. In diesen Dimensionen stösst Silizium, das zurzeit meistverwendete Material in elektronischen Elementen, an seine Grenzen. Neue Materialien sind gefragt. Wegen seiner aussergewöhnlichen elektronischen Eigenschaften gilt Graphen, ein zweidimensionales Kohlenstoff-Netzwerk, als möglicher Ersatz.

Bevor graphenartige Materialien allerdings hierfür eingesetzt werden können, sind noch einige Hürden zu überwinden. So gibt es bislang noch keine Methoden, mit denen graphenartige Materialien einfach, zuverlässig und in grossem Massstab hergestellt werden können.

Empa-Forschende aus der Abteilung «nanotech@surfaces» setzen auf die Methode der oberflächen-unterstützten Synthese. Anhand eines prototypischen Polyphenylens hat das Forschungsteam nun zusammen mit Wissenschaftlern des Max-Planck-Instituts für Polymerforschung in Mainz und der Universität Zürich im Detail aufgedeckt, wie der Reaktionsweg der so genannten Cyclodehydrierung auf einer Kupferoberfläche abläuft und wie sich die Bausteine zu einem planaren Nanographen koppeln. Die Arbeit wurde vergangenen Sonntag in der Fachzeitschrift «Nature Chemistry» als «advanced online publication» veröffentlicht.

Erfolgreiche Partner: Experiment und Simulation
Für ihre «Aufklärungsarbeit» kombinierten die Forschenden experimentelle Beobachtungen – vor allem am Rastertunnelmikroskop – mit Computersimulationen. Diese berechnen, ob ein theoretisch denkbarer Reaktionsschritt energetisch überhaupt möglich ist. Ergebnis: Der Reaktionsweg verläuft über sechs Schritte mit fünf Zwischenprodukten, wobei die Reaktionsbarrieren zwischen diesen durch die katalytische Aktivität der Oberfläche verringert wird. Zwei Zwischenprodukte werden durch die Oberfläche derart stabilisiert, dass sie mit dem Rastertunnelmikroskop abgebildet werden konnten.

Um mit den gängigen Herstellungsverfahren der Elektronik kompatibel zu sein, eignen sich Metalloberflächen wie Kupfer allerdings nicht. Die graphenartigen Materialien müssen auf Halbleitersubstraten «wachsen». Das Forschungsteam hat mit Simulationen deshalb auch durchgerechnet, ob dies funktionieren könnte, die Resultate weisen darauf hin. Diese Erkenntnisse sind der Schlüssel dazu, die oberflächenunterstützte Synthese als zuverlässige Methode für die Herstellung von graphenartigen Materialien zu etablieren.

Moderne Wissenschaft basiert auf Theorie, Experiment und Simulation
Die moderne Wissenschaft stützt sich neben Theorie und Experiment immer häufiger auf Computersimulationen. Diese werden komplementär zu oft aufwändigen Laborexperimenten eingesetzt und ermöglichen es den Forschenden, zusätzliche Informationen, die mit experimentellen Methoden nicht realisierbar wären, zu gewinnen. Dank Experimenten und Simulationen und den daraus abgeleiteten Theorien lassen sich Phänomene der Natur immer präziser abbilden und erklären.

Media Contact

Beatrice Huber EMPA

Weitere Informationen:

http://www.empa.ch

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Forschende nutzen ChatGPT für Choreographien mit Flugrobotern

Robotik und ChatGPT miteinander verbinden… Prof. Angela Schoellig von der Technischen Universität München (TUM) hat gezeigt, dass Large Language Models in der Robotik sicher eingesetzt werden können. ChatGPT entwickelt Choreographien…

Wie Gebäude das Mikrobiom und damit die menschliche Gesundheit beeinflussen

Führende internationale Forschende unter Federführung von Kiel Life Science-Sprecher Professor Thomas Bosch von der CAU beschreiben eine völlig neue Dimension der Mikrobiomforschung und weisen auf die bislang kaum untersuchten Auswirkungen…

Wie das Immunsystem von harmlosen Partikeln lernt

Unsere Lunge ist täglich den unterschiedlichsten Partikeln ausgesetzt – ungefährlichen genauso wie krankmachenden. Mit jedem Erreger passt das Immunsystem seine Antwort an. Selbst harmlose Partikel tragen dazu bei, die Immunantwort…

Partner & Förderer