Lockerer Schwung aus der künstlichen Hüfte


Künstliche Hüftgelenke aus Keramik müssen auf lange Zeit und zuverlässig sehr hohe Belastungen aushalten. Mit einem neuen Prüfverfahren können die Beanspruchungen, die im Körper auf das Implantat wirken, wirklichkeitsnah nachgebildet werden.

Jährlich erhalten allein in Deutschland 150 000 Menschen ein künstliches Hüftgelenk. Für einen langen und sorgenfreien Einsatz ist nicht nur eine gute medizinische Versorgung nötig, die Implantate müssen auch extrem belastbar und verschleißfest sein. Das Fraunhofer-Institut für Werkstoffmechanik IWM entwickelte gemeinsam mit den führenden europäischen Herstellern von Hüftimplantaten und Keramiken neue Prüfverfahren, um die Belastung im Körper realistisch nachbilden zu können.

»Ein künstliches Hüftgelenk besteht aus drei Teilen«, erklärt Roland Schäfer vom IWM. »Der Schaft wird operativ im Oberschenkelknochen verankert. An seinem oberen Ende ist ein Kugelkopf angebracht. Zusätzlich wird in der Hüfte eine Pfannenprothese implantiert. Kugel und Pfanne fügen sich ineinander und funktionieren wie das natürliche Hüftgelenk«. Auf alle drei Bestandteile – die 20 bis 30 Jahre lang funktionsfähig sein sollen – wirken Kräfte von mehreren Kilonewton, das entspricht dem Gewicht von etwa einer halben Tonne. Keramik hat sich als idealer Werkstoff für Kugelkopf und Pfanne erwiesen, denn das Material ist extrem verschleißfest, außerordentlich körperverträglich und hält sehr hohe Belastungen aus.

Es gibt verschiedene Tests, mit denen man nachbilden kann, wie die Teile im Körper belastet werden. Weil der gängige Berstversuch Nachteile hat, untersuchten die Freiburger Forscher das Verhalten der keramischen Kugelköpfe und erarbeiteten neue Prüfverfahren: »Bei einem Berstversuch wirkt eine extrem hohe Kraft – bis zu 15 t – so lange auf das Bauteil, bis es auseinander bricht«, erläutert Schäfer das Vorgehen. »Bislang zog man dann den Rückschluss: hohe Bruchlast bedeutet lange Lebensdauer«. Das war den Fraunhofer-Forschern jedoch zu wenig. Der Kugelkopf ist im Körper nicht konstant mit derselben Kraft belastet – sie verändert sich in Betrag und Richtung. Mit Hilfe von Finite-Elemente-Simulationen entwickelten die Wissenschaftler eine Prüfmethode, die den wechselnden Kräften und der unterschiedlichen Belastung Rechnung trägt. Die Arbeiten ermöglichen es nun, im Labor Bedingungen zu erreichen, die jahrelangem Einsatz beim Gehen, Laufen oder Tanzen entsprechen und stellen somit sicher, dass der lockere Schwung aus der künstlichen Hüfte auch noch nach Jahren ohne Folgen bleibt.

Ansprechpartner:
Roland Schäfer
Telefon: 07 61/51 42-1 19
Telefax: 07 61/51 42-1 10
E-Mail: rs@iwm.fhg.de

Fraunhofer-Institut für Werkstoffmechanik IWM
Wöhlerstraße 11
79108 Freiburg
Pressekontakt:
Thomas Götz
Telefon: 07 61/51 42-1 53
Telefax: 07 61/51 42-1 10
E-Mail: tg@iwm.fhg.de

Weitere Informationen finden Sie im WWW:

Media Contact

Beate Koch

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neutronen-basierte Methode hilft, Unterwasserpipelines offen zu halten

Industrie und private Verbraucher sind auf Öl- und Gaspipelines angewiesen, die sich über Tausende von Kilometern unter Wasser erstrecken. Nicht selten verstopfen Ablagerungen diese Pipelines. Bisher gibt es nur wenige…

Dresdner Forscher:innen wollen PCR-Schnelltests für COVID-19 entwickeln

Noch in diesem Jahr einen PCR-Schnelltest für COVID-19 und andere Erreger zu entwickeln – das ist das Ziel einer neuen Nachwuchsforschungsgruppe an der TU Dresden. Der neuartige Test soll die…

Klimawandel und Waldbrände könnten Ozonloch vergrößern

Rauch aus Waldbränden könnte den Ozonabbau in den oberen Schichten der Atmosphäre verstärken und so das Ozonloch über der Arktis zusätzlich vergrößern. Das geht aus Daten der internationalen MOSAiC-Expedition hervor,…

Partner & Förderer