Signifikant mehr Produktivität bei UKP-Lasern

Bild 1: Mit dem hybriden System aus frei programmierbarer Multistrahloptik und Galvo-Scanner kann ein Laserstrahl auf beliebig viele Einzelstrahlen aufgeteilt werden. © Fraunhofer ILT, Aachen / Volker Lannert

Schon in den Neunziger Jahren verglichen Wissenschaftler die Materialbearbeitung mit Nano-, Piko- und Femtosekundenpulsen. Das Ergebnis war überraschend: Material wird mit den ultrakurzen Pulsen so schnell verdampft, dass kaum Wärme im Werkstück bleibt. Dabei sind die Oberflächen besonders glatt, die Schnitte äußerst präzise und der Prozess kaum materialabhängig.

Das war lange bekannt, aber erst in den letzten 10 Jahren haben die komplexen Strahlquellen ein Niveau erreicht, welches einen 24/7 Einsatz in der Industrie erlaubt. Inzwischen werden Systeme mit bis zu 100 Watt in Stückzahlen verkauft. In der Mikromaterialbearbeitung haben sich diese Systeme etabliert, gefragt sind inzwischen mehr Produktivität und stärkere Laser. Die Entwicklung von Strahlquellen im kW-Bereich dafür ist weit fortgeschritten, aber eine einfache Skalierung der Prozesse ist nicht ohne Weiteres möglich – der »Flaschenhals« ist jetzt die Prozesstechnik.

Wer ist schneller? Scanner versus Multistrahloptik

Neue UKP-Strahlquellen bieten mehr Leistung durch Repetitionsraten bis in den MHz-Bereich oder durch höhere Pulsenergien. Für die hohen Repetitionsraten zeigen neue Scannersysteme mit Polygonspiegeln vielversprechende Ergebnisse. Der Spot muss dabei auf dem Werkstück extrem schnell bewegt werden, damit nicht zu viele Pulse überlagert werden und der entstehende Hitzestau die Qualität der Bearbeitung nicht verschlechtert.

Scanner bieten eine hohe Flexibilität bei der zu bearbeitenden Kontur, allerdings bewegen sie nur einen einzelnen Spot auf der Werkstückoberfläche. Große Flächen mit wiederkehrenden Mustern lassen sich effizienter mit sogenannten Multistrahloptiken bearbeiten.

Eine Multistrahloptik teilt einen einzelnen Laserstrahl in viele Teilstrahlen auf. Das erfordert entsprechend höhere Laserpulsenergien damit jeder Teilstrahl auch noch Material abtragen kann. Bislang erprobt sind hier Mikrooptiken oder diffraktiv-optische Elemente, die aus einem Laserstrahl ein festes Muster erzeugen. Angepasst an die Anwendung kann das eine Linie sein, eine spezielle Kontur oder auch ein Muster aus Hunderten von Einzelstrahlen.

Dynamische Multistrahloptik nutzt Flüssigkristalle

Bisher wird die Strahlformung in Multistrahloptiken durch die Beugung des Laserstrahls an festen optischen Strukturen erreicht. Experten vom Fraunhofer ILT haben jetzt ein System entwickelt, bei dem sich das diffraktive Muster im 50-Hertz-Takt umschalten lässt. Dafür nutzen sie Spatial Light Modulators (SLM), die mit Flüssigkristallen das nötige Beugungsmuster erzeugen.

In einem Versuchsaufbau haben die Aachener Forscher das System optimiert und zusammen mit einem Galvanometer-Scanner erprobt. Mit einer passenden Optik werden die Bildfehler korrigiert, sodass auch große Werkstücke mit hoher Präzision bearbeitet werden können.
Die programmierbare Vielstrahloptik ermöglicht gerade bei UKP-Lasern mit höheren Pulsenergien eine deutliche Produktivitätssteigerung. Anvisiert sind Anwendungen in der Mikroelektronik oder bei der Texturierung von Oberflächen zum Beispiel im Konsumgüterbereich.

4. UKP-Workshop 2017

Produktivität und Prozesstechnik beim Einsatz von UKP-Lasern sind wichtige Themen auf dem »UKP-Workshop – Ultrafast Laser Technology« am 26. und 27. April 2017 in Aachen. Spezialisten aus der Laserentwicklung, der Verfahrenstechnik und der Industrie treffen sich dort inzwischen zum vierten Mal, um neue Ergebnisse und Erfahrungen aus der Anwendung auszutauschen. Mehr Informationen zur Veranstaltung finden Sie unter www.ultrakurzpulslaser.de

Ansprechpartner

Dipl.-Phys. Patrick Gretzki
Gruppe Mikro- und Nanostrukturierung
Telefon +49 241 8906-8078
patrick.gretzki@ilt.fraunhofer.de

http://www.ilt.fraunhofer.de

Media Contact

Petra Nolis M.A. Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Maschinenbau

Der Maschinenbau ist einer der führenden Industriezweige Deutschlands. Im Maschinenbau haben sich inzwischen eigenständige Studiengänge wie Produktion und Logistik, Verfahrenstechnik, Fahrzeugtechnik, Fertigungstechnik, Luft- und Raumfahrttechnik und andere etabliert.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automatisierungstechnik, Bewegungstechnik, Antriebstechnik, Energietechnik, Fördertechnik, Kunststofftechnik, Leichtbau, Lagertechnik, Messtechnik, Werkzeugmaschinen, Regelungs- und Steuertechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Zur Rolle von Bitterrezeptoren bei Krebs

Rezeptoren als Angriffspunkte für Chemotherapeutika. Bitterrezeptoren unterstützen den Menschen nicht nur beim Schmecken. Sie befinden sich auch auf Krebszellen. Welche Rolle sie dort spielen, hat ein Team um Veronika Somoza…

Das ungleichmäßige Universum

Forscher untersuchen kosmische Expansion mit Methoden aus der Physik von Vielteilchensystemen. Mathematische Beschreibungen der Expansion des Universums beinhalten einen systematischen Fehler: Man nimmt an, dass die Materie im Universum gleichmäßig…

Riesenplaneten – viel früher „erwachsen“ als bisher angenommen

Ein internationales Team hat die Massen der Riesenplaneten des Systems um den Stern V1298 Tau bestimmt, das gerade einmal 20 Millionen Jahre alt ist. Dafür verwendeten die Forschenden Radialgeschwindigkeitsmessungen von…

Partner & Förderer