Haltung bewahren in der Mikrowelt – Fraunhofer IZM entwickelt elektrostatischen Träger für ultradünne Wafer

Eine elegante Lösung für die Herstellung extrem dünner mikroelektronischer Komponenten, die Realisierung von verlustarmen Leistungselektronik-Bausteinen oder die Entwicklung von 3D-integrierten Chip-Aufbauten hat nun das Fraunhofer IZM entwickelt.

Mobile elektrostatische Träger für die Prozessierung ultradünner Wafer
Die Technik ist deshalb besonders interessant, weil durch sie auch dünnste Wafer im Dickenbereich von 20 – 50 µm in den vorhandenen Prozessanlagen der Halbleiterindustrie weiterprozessiert werden können. Dazu werden die gedünnten bzw. die zu dünnenden Produkt-Wafer auf einen spezifisch präparierten Träger-Wafer gelegt und anschließend durch Aufladen einer großflächigen Elektrodenstruktur elektrostatisch fixiert.

Es hat sich gezeigt, dass bei Auswahl einer geeigneten dielektrischen Beschichtung auf dem Träger-Substrat eine lang andauernde elektrische Polarisierung erzielt wird. Der dünne Wafer bleibt somit auch nach Abkopplung der Ladespannung sicher auf dem Träger fixiert und kann weitere Prozessschritte durchlaufen. Nach Beendigung der Fertigungssequenz wird die Elektrodenstruktur entladen, und der gedünnte Wafer kann leicht wieder entfernt werden.

Da für diese neue Trägertechnik keine polymeren Klebstoffe benötigt werden, sind nach dem Ablösen des zu bearbeitenden Wafers auch keine Reinigungsprozeduren erforderlich.

Das Trägersubstrat selbst ist ein Silizium-Wafer, der in Dünnfilmtechnik strukturiert und an der Kontaktfläche zum fixierten dünnen Wafer vollständig elektrisch isoliert ist. Die Kontaktstellen zum Aufladen der Elektroden können an der Vorder- oder Rückseite des Trägersubstrats realisiert werden.

Im Gegensatz zu anderen Trägermaterialien, wie z.B. Glas, Saphir oder Keramik, bietet Silizium die entscheidenden Vorteile einer sehr guten Wärmeleitfähigkeit und, im Falle der Handhabung von dünnen Silizium-Wafern, auch einen ideal angepassten Wärmeausdehnungskoeffizient.

Einsatzmöglichkeiten
Die elektrostatische Haltekraft ist auch bei Temperaturen über 400 °C noch aktiv. Somit bietet diese Trägertechnik erstmals die Möglichkeit, Prozessschritte an sehr dünnen Wafern bei hohen Temperaturen auszuführen. Beispiele hierfür sind das Legieren von Rückseitenmetallisierungen oder das Aufbringen und Plasma-Ätzen von dielektrischen Schichten.

Potenzielle Anwendungsgebiete der elektrostatischen Trägertechnik sind neben der Leistungselektronik auch opto-elektronische Produkte, Bumping-Prozesse an dünnen Wafern, die Herstellung noch dünnerer Solarzellensubstrate und viele weitere Technologiefelder, bei denen fragile Substrate prozessiert werden sollen.

Kontakt:
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM
Institutsteil München
Hansastraße 27 d
80686 München
URL: www.izm.fraunhofer.de
Christof Landesberger
Tel.: 089/54759 295
Fax: 089/54759 100
Mail: christof.landesberger@izm-m.fraunhofer.de

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Mikroschwimmer lernen effizientes Schwimmen von Luftblasen

Forscher am Max-Planck-Institut für Dynamik und Selbstorganisation zeigen, dass das Geheimnis des optimalen Mikroschwimmens in der Natur liegt: Ein effizienter Mikroschwimmer kann seine Schwimmtechniken von einem unerwarteten Mentor erlernen: einer…

Neue antimikrobielle Polymere als Alternative zu Antibiotika

Neue Emmy Noether-Gruppe der Universität Potsdam forscht gemeinsam mit Fraunhofer IAP Am 1. Januar 2021 nahm die neue Emmy Noether-Gruppe »Antimikrobielle Polymere der nächsten Generation« an der Universität Potsdam in…

Besser gebündelt: Neues Prinzip zur Erzeugung von Röntgenstrahlung

Göttinger Physiker entwickeln Methode, bei der Strahlen durch „Sandwichstruktur“ simultan erzeugt und geleitet werden. Röntgenstrahlung ist meist ungerichtet und schwer zu leiten. Röntgenphysiker der Universität Göttingen haben eine neue Methode…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen