Leuchtende Spirale

Damit wir unseren Weg finden, benutzen wir Landkarten. Zellen richten sich nach „chemischen Landkarten“, sie orientieren sich, indem sie Konzentrationsgradienten von Lockstoffen folgen oder Abwehrmitteln ausweichen.

David H. Gracias und ein Team an der Johns Hopkins University (Baltimore, USA) haben jetzt eine pfiffige neue Methode entwickelt, um dreidimensionale Muster chemischer Konzentrationsgradienten in vitro zu erzeugen – mit bisher unerreichter Vielseitigkeit und Präzision in Raum und Zeit.

Wie die Wissenschaftler in der Zeitschrift Angewandte Chemie berichten, nutzen sie dazu winzige verschieden geformte Behälter mit unterschiedlichen Anordnungen von Schlitzen, durch die chemische Botenstoffe hinausdiffundieren können. So brachten sie fluoreszierende Zellen dazu, sich in Form einer grün leuchtenden Spirale anzuordnen.

Konzentrationsgradienten können nicht nur Bakterien, Pilzen und Amöben den Weg weisen, sie sind auch in den frühen Phasen der Embryogenese von großer Bedeutung, da die Entwicklung der Keimblätter durch Konzentrationsgradienten von Botenstoffen gesteuert wird. Dreidimensionale chemische Muster spielen bei vielen physiologischen und pathologischen Prozessen eine Rolle, etwa beim Wachstum von Blutgefäßen, der Regelung von Blutdruck und Herzfrequenz oder der Metastase von Tumoren. Und auch unsere Immunzellen finden dorthin, wo sie benötigt werden, indem sie Konzentrationsgradienten folgen.

Um solche Vorgänge genauer zu untersuchen, wollen Wissenschaftler chemische Gradienten in vitro nachahmen. Ein dreidimensionales chemisches Muster zu erzeugen und auch lange genug aufrecht zu erhalten, ist gar nicht so einfach. Mit bisherigen mikrofluidischen Methoden lassen sich nur zweidimensionale Muster in limitierter Größe erzeugen. Eine Alternative ist die hier vorgestellte Diffusion von Chemikalien aus präzise geformten porösen Behältern in stationären Medien. Durch eine Variation der Behältergeometrie und der Porenmuster der Wände sind die verschiedensten dreidimensionalen Konzentrationsmuster realisierbar.

Der besondere Trick: Gracias und seine Kollegen „basteln“ ihre Behälter aus zweidimensionalen Flächen, die über winzige Scharniere miteinander verbunden sind. Diese wurden so konzipiert, dass sich die Behälter von selber falten, wenn sie erhitzt werden, und nach dem Abkühlen fest verschlossen bleiben. So lassen sich Behälter in Größen von 100 nm bis zu wenigen Millimetern herstellen – für Untersuchungen von dersubzellulären bis zur Gewebe-Ebene. Vor dem Falten kann jede Fläche durch etablierte lithographische Methoden in höchster Präzision mit einer definierten Anordnung von Schlitzen oder Lochmustern perforiert werden.

Durch eine versetzte Anordnung von Schlitzen auf vier Flächen eines Quaders gelang es den Forschern, einen Lockstoff so austreten zu lassen, dass ein Konzentrationsgradient in Form einer um den Behälter gewundenen Spirale zu erzeugen. Fluoreszierende Bakterien folgten diesem Muster und ordneten sich zu einer grün leuchtenden Spirale an.

Autor: David Gracias, Johns Hopkins University, Baltimore (USA), http://www.jhu.edu/chembe/gracias/

Angewandte Chemie 2011, 123, No. 11, 2597–2601, Permalink to the article: http://dx.doi.org/10.1002/ange.201007107

Media Contact

Dr. Renate Hoer GDCh

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Stofftrennung trifft auf Energiewende

Trennkolonnen dienen der Separation von unterschiedlichsten Stoffgemischen in der chemischen Industrie. Die steigende Nutzung erneuerbarer Energiequellen bringt nun jedoch neue Anforderungen für einen flexibleren Betrieb mit sich. Im Projekt ColTray…

Funktionalisiertes Chitosan als biobasiertes Flockungsmittel

… für die Aufbereitung komplexer Abwässer. Forschende am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB haben ein biobasiertes und funktionalisiertes Flockungsmittel entwickelt, mit dem sich Abwässer mit komplexen Inhaltsstoffen effizient aufreinigen…

„Lücke“ bei CO2-Entnahmen

MCC-geführtes Forschungsteam beziffert erstmals die „Lücke“ bei CO2-Entnahmen. In Anlehnung an den Emissions Gap Report der Uno. Pläne der Staaten zum Zurückholen aus der Atmosphäre sind nicht auf dem Pfad…

Partner & Förderer