Komplexe Beziehungen besser verstehen

Durch statistische Analysen können natürliche Netzwerke wie das Nervensystem eines Wurms (oben) mit Modellnetzwerken (unten) verglichen werden. Grafik: Bernstein Center Freiburg; Wurm-Netzwerk nach Varshney et al., PLoS Comp Biol. 2011<br>

Von Epidemien, die sich über den Globus ausbreiten, bis zum Beginn eines epileptischen Anfalls im Gehirn: Viele Ereignisse können als Folge von Netzwerkaktivität gesehen werden. Oft ist es von entscheidender Bedeutung, die Eigenschaften dieser Netzwerke zu verstehen.

Allerdings sind sie häufig zu komplex, um sie vollständig zu beschreiben. Doch Wissenschaftler vom Bernstein Center der Universität Freiburg konnten nun zeigen, wie sich globale Gesetzmäßigkeiten komplexer Netzwerke in lokalen statistischen Eigenschaften niederschlagen, die viel leichter untersucht werden können. Bei ihrer Forschung profitierten die Freiburger von den Hochleistungsrechnern des Bernstein Centers, die normalerweise eingesetzt werden, um die Aktivität von Nervenzellen im Gehirn zu simulieren.

In einem Artikel der Fachzeitschrift PLoS ONE beschreiben Stefano Cardanobile und seine Kollegen, wie sie 200.000 im Computer erzeugte Netzwerke analysiert haben – mit Modellen, die Wissenschaftlerinnen und Wissenschaftler nutzen, um in der Natur vorkommende Netzwerke zu verstehen. Die Modelle verglichen die Forscher mit gut erforschten Netzwerken: dem Stoffwechsel eines Bakteriums, den Beziehungen zwischen Synonymen in einem Wörterbuch und dem Nervennetz eines Wurms. Damit konnten sie jene Modelle bestimmen, die die Eigenschaften realer Netzwerke am besten vorhersagen. Diese Einsichten können Wissenschaftlern unterschiedlichster Disziplinen helfen, das richtige Modell heranzuziehen.
Vor allem konnten die Freiburger aber zeigen, dass es möglich ist, globale Eigenschaften komplexer Netzwerke aus statistischen Daten abzuleiten, die über lokale Merkmale vorliegen. Somit erkennen sie auch dann wichtige Eigenschaften von Netzwerken, wenn diese nicht in Gänze analysiert werden können – was bei großen Systemen, etwa sozialen Kontakten zwischen Menschen oder den Verbindungen im Gehirn, unmöglich wäre. Daher leistet die Studie, so die Autoren, einen wichtigen Beitrag zum besseren Verständnis komplexer Netzwerke.

Kontakt:
Prof. Dr. Stefan Rotter
Bernstein Center Freiburg
Tel.: 0761/203-9316
Fax: 0761/203-9559
E-Mail: stefan.rotter@biologie.uni-freiburg.de
http://dx.plos.org/10.1371/journal.pone.0037911 – Originalveröffentlichung in PLoS ONE: S. Cardanobile, V. Pernice, M. Deger und S. Rotter (2012) Inferring general relations between network characteristics from specific network ensembles.

Media Contact

Rudolf-Werner Dreier idw

Weitere Informationen:

http://www.uni-freiburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Auto als rollender Supercomputer

Moderne Autos sind mit Elektronik vollgepackt. Das Management der vielen Rechner und Assistenzsysteme ist komplex, zudem erhöhen die Kabelbäume das Gewicht der Fahrzeuge. Fraunhofer-Forschende arbeiten im Verbundprojekt CeCaS an einer…

Digitaler Zwilling für flexible Postsendungen

Biegeschlaffe Postsendungen mit flexibler Verpackung – sogenannte „Polybags“ – stellen Logistiker bei der automatischen Sortierung vor Probleme. Dank moderner Simulationsmethoden gibt es dafür nun eine breit anwendbare Lösung. Wer online…

Klebstoffe aus Federn

Klebstoffe beruhen fast immer auf fossilen Rohstoffen wie Erdöl. Fraunhofer-Forschende haben nun ein Verfahren entwickelt, mit dem der biobasierte Rohstoff Keratin erschlossen wird. Die leistungsfähige Protein-Verbindung ist beispielsweise in Hühnerfedern…

Partner & Förderer