Fledermäuse: Artenexplosion dank Beißkraft

Blattnasenfledermäuse (Phyllostomidae)<br>Fotos: Dumont et al.<br>

Eines der größten Rätsel der Evolution ist, warum einige Gruppen von Organismen viele Arten umfassen, andere hingegen nur wenige. Amerikanische Wissenschaftler haben in Zusammenarbeit mit dem Berliner Leibniz-Institut für Zoo- und Wildtierforschung (IZW) die Evolution der Artbildung in der Familie der Blattnasenfledermäuse (Phyllostomidae) untersucht. Blattnasenfledermäuse stellen mit etwa 200 Arten eine der artenreichsten Säugetierfamilien dar, während die nächsten Verwandten nur ungefähr 10 Arten umfassen.

Die Studie der Wissenschaftler ergab, dass bei Blattnasenfledermäusen die Entstehung neuer Arten mit der Evolution einer neuen Schädelform einhergegangen sein muss. Für diese Studie untersuchten die Forscher um Dr. Elizabeth Dumont (University of Massachusetts, Amherst), Dr. Liliana Dávalos (Stony Brook University) und Dr. Christian Voigt vom Leibniz-Institut für Zoo- und Wildtierforschung (IZW) sowie Kollegen der University of California, Los Angeles die Beißkraft und Nahrungswahl freilebender Fledermäuse in den Tropen sowie deren Schädelstruktur an Museumsexemplaren.

In der aktuellen Ausgabe der Fachzeitschrift Proceedings of the Royal Society haben die Forscher eine Studie über den Zusammenhang zwischen Schädelstruktur und Artbildung veröffentlicht. Je nach Schädelform haben sich die Fledermäuse auf einen kleinen Kreis von Nahrungsquellen spezialisiert, so haben etwa nektartrinkende Fledermäuse lange schmale Schnauzen mit denen sie optimal in Blüten hineinreichen, wohingegen Fledermäuse, die sich vorwiegend von harten Früchten ernähren, über ein kurzes, mopsähnliches Gesicht verfügen. Blattnasenfledermäuse ernähren sich von Insekten, Nektar, Früchten, Fröschen, Eidechsen und sogar Blut.

Die Entwicklung breiterer Schädelformen vor etwa 15 Millionen Jahren ermöglichte es den Vorfahren dieser Fledermäuse, eine große Beißkraft anzuwenden und somit neue Nahrungsquellen zu erschließen. Diese Schlüsseltechnologie öffnete den Blattnasenfledermäusen den Zugang zu neuen Ressourcen wie zum Beispiel den Früchten. Dies ermöglichte eine schnelle und vielfältige Aufteilung in verschiedenste neue Fledermausarten. Ein interessanter Nebeneffekt ist, dass Samen vieler Pflanzenarten nun von Fledermäusen anstelle von Vögeln ausgebreitet werden.

Publikation:
The Royal Society Press / Proceedings of the Royal Society B: Biological Sciences

Ansprechpartner und Fotos

Leibniz-Institut für Zoo- und Wildtierforschung (IZW)
im Forschungsverbund Berlin e.V.
Alfred-Kowalke-Str. 17
10315 Berlin
GERMANY
Dr. Christian Voigt (Wissenschaftler)
voigt@izw-berlin.de
Telefon 0049 (0)30 51 26 517
Steven Seet (Pressesprecher)
seet@izw-berlin.de
Telefon 0049 (0)30 51 68 108

Media Contact

Christine Vollgraf Forschungsverbund Berlin e.V.

Weitere Informationen:

http://www.izw-berlin.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer