Aus eins mach zwei – erstes deutsches Genom bis auf den Grund entschlüsselt

Kopier- und Ablesefehler des Erbguts können dramatische Folgen haben. Gut, dass das Erbgut des Menschen doppelt vorhanden ist. Denn jeder Mensch bekommt ein vollständiges Genom von der Mutter und vom Vater.

Die beiden Genome unterscheiden sich jedoch voneinander; Forscher bezeichnen die unterschiedlichen Varianten der Gensequenz auf den einzelnen Chromosomen als „Haplotypen“. Für eine vollständige Analyse des Erbguts ist es notwendig, beide Haplotypen genau zu kennen. Wissenschaftler des Berliner Max-Planck-Instituts für molekulare Genetik haben jetzt erstmalig beide Chromosomensätze eines menschlichen Genoms getrennt voneinander entschlüsselt.

Dies ist eine unverzichtbare Voraussetzung für ein tieferes Verständnis der menschlichen Biologie, die Analyse von Krankheitsrisiken und damit die Entwicklung neuer, individualisierter Strategien zur Prävention und Behandlung von Krankheiten. Zugleich entschlüsselte das Team um Margret Hoehe erstmals vollständig das Genom eines deutschen Individuums.

Jeder Mensch bekommt von Mutter und Vater ein eigenes Genom vererbt, daher kommt jedes seiner 22 Chromosomen (Autosomen) einschließlich der darauf vorhandenen Gene doppelt vor. Davon ausgenommen sind nur die beiden Geschlechtschromosomen (23. Chromosomen­paar). Die beiden Fassungen, in denen jedes Gen vorliegt, können identisch sein oder sich voneinander unterscheiden; die Unterschiede werden als so genannte Haplotypen dargestellt.

Wissenschaftler des Max-Planck-Instituts für molekulare Genetik in Berlin haben jetzt erstmalig ein menschliches Genom nahezu vollständig in seine molekularen Haplotypen zerlegt und die beiden Einzelgenome entschlüsselt. In der aktuellen Ausgabe der Zeitschrift Genome Research beschreiben Margret Hoehe und ihre Kollegen, dass sie dabei mehr als 99 Prozent aller Basenunterschiede (SNPs), insgesamt mehr als 3 Millionen SNPs, in ihren konkreten Kombinationen jeweils einer der beiden Versionen jedes Chromosoms zugeordnet haben. Es handelt sich um das erste deutsche Genom überhaupt, das komplett entschlüsselt und zugleich in bisher nicht erreichter Gründlichkeit analysiert wurde.

Die bis heute angewandten Sequenziertechnologien sind nicht in der Lage, beide Fassungen eines Chromosoms getrennt auszulesen. Stattdessen liefern sie dem Betrachter einen „Cocktail“ aus beiden Chromosomenversionen. Die Wissenschaftler mussten eine neue Methode entwickeln, um die unterschiedlichen Abfolgen der Gen-Buchstaben für beide Versionen der Chromosomen getrennt voneinander bestimmen zu können. „Die Biologie des Genoms muss endlich auf seine zwei Beine gestellt werden, wie die Natur es vorgegeben hat“, sagt die Leiterin der Arbeitsgruppe Margret Hoehe. „Es wird immer nur von dem Genom gesprochen. Für die Entwicklung einer personalisierten Medizin ist es jedoch unverzichtbar, beide Chromosomensätze eines Individuums gesondert zu betrachten, da sie sich hinsichtlich ihres genetischen Codes und damit auch ihrer kodierten Funktionen unterscheiden können.“

Die in Berlin durchgeführte umfassende systematische Analyse der Haplotypen eines mensch­lichen Erbguts ist eine Premiere. Mit der im Rahmen des Nationalen Genomforschungsnetzes geförderten Arbeit ist es Hoehe und ihrem Team gelungen, fast alle der 17.861 autosomalen Protein-kodierenden Gene des Genoms eines 51-jährigen männlichen Deutschen getrennt für seine beiden Chromosomenausgaben zu entschlüsseln. Die Ergebnisse zeigten, dass 90 Prozent der vorhandenen Gene zwei unterschiedliche molekulare Formen haben. „Die beiden Chromosomensätze unseres persönlichen Genoms unterscheiden sich insgesamt an rund 2 Millionen Stellen. Anstatt wie bisher ein Genom als Mischprodukt auszulesen, muss künftig jeder der beiden Haplotypen für sich alleine bestimmt werden, um den naturgegebenen biologischen Vorgaben gerecht zu werden“, so Hoehe.

Den Wissenschaftlern ist es erstmals auch gelungen, ein Genom in seiner molekularen Individualität zu erfassen. So kommen 60 bis 75 Prozent, also die Mehrzahl der Gene, in ihren charakteristischen molekularen Formen so offenbar nur in dem jetzt untersuchten Menschen vor. „Unsere Ergebnisse zeigen sehr deutlich, dass die Biologie von Genen und Genomen eine starke individuelle Komponente hat“, erklärt Hoehe. Diese Erkenntnis ist besonders wichtig für die Entwicklung individueller Therapien für jeden einzelnen Patienten, denn „für eine wirklich funktionierende personalisierte Medizin müssen wir beide Haplotypen eines Menschen kennen, weil beide über dessen Gesundheit oder Krankheit entscheiden“, sagt Hoehe. Ein gutes Beispiel dafür sei das BRCA1-Gen, das in mutierter Form für Brustkrebs anfällig mache. So trägt das untersuchte Genom des 51-jährigen Probanden zwei Mutationen in diesem Brustkrebs-Gen – glücklicherweise in derselben Genkopie. Die Kopie auf dem anderen Chromosom ist unverändert. Das Genom besitzt also trotz dieser zwei Mutationen eine gesunde Version des Gens. „Das Wissen, ob Mutationen beide Haplotypen betreffen, ist essenziell, um künftig das Krankheitsrisiko eines Patienten wirklich beurteilen zu können“, so Hoehe. Insgesamt identifizierten die Wissenschaftler in ihrem Probanden 159 mutierte Gene mit krankheitsförderndem Potenzial, die die Funktion von Proteinen beeinträchtigen können. In 86 dieser Gene befinden sich die Mutationen in derselben Genkopie.

Für die Zukunft erwachsen aus den Erkenntnissen der Max-Planck-Wissenschaftler neue und grundlegende Fragen: Wie verhalten sich die beiden unterschiedlichen molekularen Formen eines Genes zueinander? Arbeiten sie zusammen oder gegeneinander? Welche der beiden Genformen ist dominant und warum? Denn nur wenn eine Form des Gens ihr Gegenstück überstimmt, kann sie einen Menschen auch wirklich krank machen. „Deshalb ist die Unterscheidung der Haplotypen essenziell, um zukünftig die Entstehung von Krankheiten verstehen und auch behandeln zu können“, sagt Hoehe.

Ansprechpartner
Dr. Margret Hoehe
Max-Planck-Institut für molekulare Genetik, Berlin
Telefon: +49 30 8413-1468
E-Mail: hoehe@molgen.mpg.de
Dr. Patricia Marquardt
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Genetik, Berlin
Telefon: +49 30 8413-1716
Fax: +49 30 8413-1671
E-Mail: patricia.marquardt@molgen.mpg.de
Originalveröffentlichung
Eun-Kyung Suk, Gayle K. McEwen, Jorge Duitama, Katja Nowick, Sabrina Schulz, Stefanie Palczewski, Stefan Schreiber, Dustin T. Holloway, Stephen McLaughlin, Heather Peckham, Clarence Lee, Thomas Huebsch, Margret R. Hoehe
A comprehensively molecular haplotype-resolved genome of a European individua
Genome Research, 7. September 2011; doi/10.1101/gr.125047.111

Media Contact

Dr. Margret Hoehe Max-Planck-Institut

Weitere Informationen:

http://www.mpg.de/4412475/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Hochleistungs-Metalloptiken mit Lothar-Späth-Award 2021 ausgezeichnet

Fraunhofer IOF und HENSOLDT Optronics entwickeln optisches Teleskop zur Erforschung des Jupitermondes Ganymed. Forscher des Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF sind gemeinsam mit ihrem Partner für die Entwicklung…

Chemiker designen „molekulares Flaggenmeer“

Forschende der Universität Bonn haben eine molekulare Struktur entwickelt, die Graphit-Oberflächen mit einem Meer winziger beflaggter „Fahnenstangen“ bedecken kann. Die Eigenschaften dieser Beschichtung lassen sich vielfältig variieren. Möglicherweise lassen sich…

Der nächste Schritt auf dem Weg zur Batterie der Zukunft

Kompetenzcluster für Festkörperbatterien „FestBatt“ des Bundesministeriums für Bildung und Forschung geht in die zweite Förderphase – Koordination durch Prof. Dr. Jürgen Janek vom Gießener Zentrum für Materialforschung – Rund 23…

Partner & Förderer