Moleküle für die Steuerung von Nervenzellen: Moleküle, die (beinahe) alles für Neuronen tun können

Während der embryonalen Entwicklung bauen die Neuronen des Gehirns Milliarden von Verbindungen auf, indem sie lange Fortsätze emittieren, die man Axone nennt. Das Wachstum ist nicht zufällig, sondern sehr genau orientiert und wird von Molekülen in der zellulären Umgebung gesteuert, welches das Axon durchquert. Der Mechanismus dieser kontrollierenden Steuerung blieb bisher rätselhaft.

2 französische und 2 amerikanische Teams haben jedoch vor kurzem wichtige Fortschritte in dieser Frage erzielt und diese in den renommierten Fachjournalen „Nature Cell Biology“ und „Neuron“ veröffentlicht. Anhand zweier unterschiedlicher Beispiele zeigen sie auf, dass die Moleküle, die die Axone steuern, auch auf anderen Ebenen Einfluß auf die Gehirnplastizität haben können.

Unser Gehirn enthält Milliarden von Zellen, die untereinander sehr genaue Verbindungen aufbauen. Steuermoleküle ermöglichen es den Nervenfasern, sich durch Anziehung oder Abstoßung exakt auf die Gehirnzentren zu orientieren und so ein Netzwerk von Nervenzellen zu errichten. Die französischen und amerikanischen Teams haben sich für 2 Aspekte dieses Führungsmechanismus interessiert.

Das erste Beispiel hat mit der Entwicklung des visuellen Systems zu tun. Bei Wirbeltieren entwickeln sich die Nervenfasern der Netzhautzellen zu einer Gehirnzone, die optisches Dach heißt. Diese Entwicklung erfolgt mit hoher Genauigkeit und berücksichtigt eine sehr präzise topographische Organisation. Das RGM (Repulsive Guidance Molecule) Protein wird im optischen Dach ausgedrückt, und führt die finalen Verbindungen zu den geeigneten Zonen. Die Forscher konnten zeigen, dass RGM den Axon-Enden Abstoßsignale sendet, wo sie dank des „Neogerine“ Proteins wahrgenommen werden. Überraschenderweise funktioniert das RGM-Neogenine Duo auf einer anderen Ebene und trägt zum Überleben der Zellen bei. Wird der Ausdruck von RGM oder Neogenine in Nervensystemzellen bei der Entwicklung des Hühnerembryos gestört, kommt es zur Apoptose, d.h. zum programmierten Zelltod. Um der Apoptose vorzubeugen, müssen die Neogenine formierenden Zellen das RGM fixieren, und sind somit von diesem Molekül für ihr Überleben abhängig. Deshalb funktioniert Neogenine auf zwei verschiedene Weisen: in einem frühen Entwicklungsstadium und in Abwesenheit von RGM, verursacht Neogenine den Tod von bestimmten Zellen und bestimmt die Zahl der Neuronen, die sich entwickeln „dürfen“. Anschließend erhält Neogenine Abstoßungssignale von RGM und wirkt dann als Steuermolekül.

Das zweite Beispiel eines Steuersystems hat mit dem Überschreiten der Linea mediana, die beide Großhirnhemisphären trennt, durch die Axonen zu tun. Bei den meisten Tierarten sind die rechte und linke Seite des Nervensystems fast symmetrisch. Eine der ersten Entscheidungen die ein sich entwickelndes Axon treffen muss, ist, ob es die Linea mediana überschreitet oder nicht. Übrigens darf ein Axon diese Linea nur einmal überschreiten. „Slits“ (abstoßende Steuerproteine) werden in der Linea mediana zusammengeführt und spielen bei diesem Mechanismus eine Rolle: indem sie sich auf ihrem sogenannten „Robo“ (Roundabout) Rezeptor am Ende des Axons fixieren, zwingen sie das Axon, sich von der Linea mediana fern zu halten. Fehlt bei Mäusen ein Robo Rezeptor (robo3), formt sich das Nervensystem schlecht aus und es kommt zu Problemen bei der Migration bestimmter Neuronen während der Entwicklung: deshalb spielen die axonalen Steuermoleküle auch eine Rolle bei der Steuerung der Migration der Neuronen selbst.

Weitreichendere Arbeiten könnten zu therapeutischen Anwendungen führen, wie zum Beispiel bei der Wiederherstellung des Nervensystems nach Unfallschäden oder Ischämieläsionen. Des Weiteren ist nicht ausgeschlossen, dass RGM und Neogenine in vielen Geweben (nicht nur im Gehirn!) einen einschränkenden Mechanismus bei der Tumorentwicklung darstellen.

Kontakt:
Alain Chedotal
Laboratoire de neurobiologie des processus adaptatifs,
CNRS UMR 7102, Université Pierre et Marie Curie
9 quai St Bernard, Bat B, 5etage, F-75005 Paris
Email: chedotal@infobiogen.fr
Tel. +33 1 44 27 34 47

Patrick Mehlen
Centre de génétique moléculaire et cellulaire CNRS
Université Lyon 1
Email: mehlen@univ-lyon1.fr
Tel. +33 4 72 44 81 90

Media Contact

Jean-Michel Nataf Wissenschaft-Frankreich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Was die Körnchen im Kern zusammenhält

Gerüst von Proteinflecken im Zellkern nach 100 Jahren identifiziert. Nuclear Speckles sind winzige Zusammenballungen von Proteinen im Kern der Zelle, die an der Verarbeitung genetischer Information beteiligt sind. Berliner Forschende…

Immunologie – Damit Viren nicht unter die Haut gehen

Ein Team um den LMU-Forscher Veit Hornung hat einen Mechanismus entschlüsselt, mit dem Hautzellen Viren erkennen und Entzündungen in Gang setzen. Entscheidend für die Erkennung ist eine typische Struktur der…

Kleine Moleküle steuern bakterielle Resistenz gegen Antibiotika

Sie haben die Medizin revolutioniert: Antibiotika. Durch ihren Einsatz können Infektionskrankheiten, wie Cholera, besser behandelt werden. Doch entwickeln die krankmachenden Erreger zunehmend Resistenzen gegen die angewandten Mittel. Nun sind Wissenschaftlerinnen…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close