Laser – World of Photonics 2015: Mini-Laser für die Qualitätskontrolle in Echtzeit

Künftig lässt sich der Verlauf chemischer Reaktionen in Echtzeit verfolgen. Möglich macht es ein Quantenkaskadenlaser, der pro Sekunde 1000 Spektren aufnimmt. © Fraunhofer IAF

Pharmaindustrie, Lebensmittelherstellung oder industrielle Fertigung – ständig werden neue Produkte auf den Markt gebracht, mit verbesserten Wirkstoffen oder verträglicheren Zusammensetzungen. Ein wichtiger Punkt bei der Entwicklung stofflicher Zusammensetzungen, wie beispielsweise Pillen, Kapseln und Co.: Ihre Qualität muss stimmen.

Um zu überprüfen, ob die chemische Reaktion wie gewünscht abläuft, nehmen Laboranten Proben aus den Reaktionsgefäßen und untersuchen sie im Labor per Chromatografie oder Spektrometer. Eine aufwändige und langwierige Angelegenheit, die nur eine stichprobenartige Untersuchung erlaubt.

Kontinuierliche Analyse in Echtzeit

Mit einem speziellen Infrarot-Laser könnte das künftig weitaus einfacher gehen. Entwickelt wurde er von Forschern an den Fraunhofer-Instituten für Angewandte Festkörperphysik IAF in Freiburg und für Photonische Mikrosysteme IPMS in Dresden. »Unser Quantenkaskadenlaser ermöglicht eine neue Art der Spektroskopie«, erläutert Dr. Ralf Ostendorf, Projektleiter am Fraunhofer IAF.

»Der Verlauf chemischer Reaktionen, zum Beispiel bei der Entwicklung neuer Pharmazeutika, könnte bald in Echtzeit kontinuierlich verfolgt werden, statt wie bisher nur in Form einzelner Stichproben.« Das Prinzip: Der Laser strahlt Infrarotlicht in das Reaktionsgefäß. Die darin enthaltenen Substanzen absorbieren einen Teil des Lichts, der Rest wird wieder zurückgeworfen und in einem Detektor analysiert. Jede Substanz »verschluckt« dabei das Licht unterschiedlicher Wellenlängen.

Das Ergebnis ist ein Absorptionsspektrum, über das sich die jeweilige Substanz präzise bestimmen lässt – so ähnlich, wie bei der Identifikation eines Menschen anhand seines Fingerabdrucks. Mit einem solchen Spektrometer kann man künftig genau angeben, wie hoch die Konzentration der Ausgangsstoffe im Reaktionsbehälter ist und welche Mengen bereits in das Produkt umgesetzt wurden – und zwar zu jedem beliebigen Zeitpunkt der Reaktion.

Tausend Spektren pro Sekunde

Der Laser muss dazu verschiedene Voraussetzungen erfüllen: Er darf jeweils nur Licht einer bestimmten Wellenlänge aussenden. Diese muss sich allerdings kontinuierlich verändern lassen – und zwar über einen großen spektralen Bereich. Das Laserlicht hat also anfangs eine sehr kleine Wellenlänge, die stetig bis zu einem festgelegten Wert zunimmt – bevor das Prozedere wieder von vorn beginnt. Der Detektor bestimmt dann für jede Wellenlänge, wie viel Licht die Probe zurückwirft.

Eine weitere Herausforderung: Der Laser muss seine Wellenlänge auch möglichst schnell ändern. Bislang brauchte der Laser einige Sekunden, um alle Wellenlängen durchzustimmen und so eine Aussage darüber zu treffen, wie es um die zu analysierende chemische Reaktion steht. Die Forscher vom IPMS konnten diese Geschwindigkeit nun um den Faktor 1000 steigern: Mit einem von ihnen entwickelten mikromechanischen Scannerspiegel. Statt eines Spektrums pro Sekunde können sie nun tausend Spektren pro Sekunde aufnehmen.

Kaum größer als eine Streichholzschachtel

Der Laser ist nur wenig größer als eine Streichholzschachtel. Damit passt er nicht nur gut an die Reaktionsgefäße in der pharmazeutischen oder chemischen Industrie, er ermöglicht auch weitere Anwendungen. Denkbar ist beispielsweise ein Handgerät, mit dem Polizisten oder Zollbeamte verdächtige Substanzen schnell und einfach überprüfen können.

Handelt es sich um etwas Unbedenkliches wie Mehl oder doch um Drogen? Um diese Frage zu beantworten, müssten die Einsatzkräfte einfach nur den Laserstrahl auf die Substanz richten. Der Detektor analysiert das aufgenommene Spektrum, eine dahinter liegende Software gleicht es mit den zahlreichen gespeicherten Vergleichsspektren ab – und in Sekundenschnelle haben die Beamten Klarheit über die untersuchte Substanz.

Ein erster Labordemonstrator des Quantenkaskadenlasers ist bereits fertig. Einen Prototyp wollen die Forscher bis Ende 2015 entwickeln. Auf der Messe »Laser – World of Photonics« vom 22. bis 25. Juni in München stellen sie den Laser vor und demonstrieren sein Potenzial für die Spektroskopie (Halle A3, Stand 121 und Halle B3, Stand 341).

Media Contact

Ines Bott Fraunhofer Forschung Kompakt

Alle Nachrichten aus der Kategorie: Messenachrichten

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wolken bedecken die Nachtseite des heißen Exoplaneten WASP-43b

Ein Forschungsteam, darunter Forschende des MPIA, hat mit Hilfe des Weltraumteleskops James Webb eine Temperaturkarte des heißen Gasriesen-Exoplaneten WASP-43b erstellt. Der nahe gelegene Mutterstern beleuchtet ständig eine Hälfte des Planeten…

Neuer Regulator des Essverhaltens identifiziert

Möglicher Ansatz zur Behandlung von Übergewicht… Die rapide ansteigende Zahl von Personen mit Übergewicht oder Adipositas stellt weltweit ein gravierendes medizinisches Problem dar. Neben dem sich verändernden Lebensstil der Menschen…

Maschinelles Lernen optimiert Experimente mit dem Hochleistungslaser

Ein Team von internationalen Wissenschaftlerinnen und Wissenschaftlern des Lawrence Livermore National Laboratory (LLNL), des Fraunhofer-Instituts für Lasertechnik ILT und der Extreme Light Infrastructure (ELI) hat gemeinsam ein Experiment zur Optimierung…

Partner & Förderer