Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationale Expertinnen und Experten für Brennstoffzellen treffen sich in Dübendorf

13.03.2006


Brennstoffzellen gelten als Energielieferanten der Zukunft; ob als Antriebsquelle für Fahrzeuge, als Stromlieferant für Laptops, Handys, Mehrfamilienhäuser oder ganze Kraftwerke - der umweltfreundliche Batterieersatz lässt sich (zumindest theoretisch) fast überall einsetzen. Dazu müssen allerdings erst die "Kinderkrankheiten" der neuen Technologie überwunden werden. So sind etwa Lebensdauer - und damit Wirtschaftlichkeit - der Brennstoffzellen sowie ihr Wirkungsgrad noch gering. Daher entwickeln WissenschaftlerInnen an der Empa neue, beständigere Materialien und evaluieren verschiedene Brennstoffzellensysteme auf ihre Praxistauglichkeit. Am 16. und 17. März sind sie Gastgeber für das vom Bundesamt für Energie (BFE) initiierte "Fuel Cell Research Symposium", an dem internationale ExpertInnen die neusten Entwicklungen der Brennstoffzellentechnologie vorstellen, vor allem auf dem Gebiet der Computersimulation und -modellierung.


Aus den an der Empa entwickelten Keramikpulvern werden die für die Brennstoffzellen erforderlichen Anoden (schwarz), Kathoden (grün) und Elektrolyte (weiss) geformt. Bild Empa




Brennstoffzellen wandeln chemische Energie direkt in Elektrizität und Wärme um. Die Idee ist alt; bereits im 19. Jahrhundert wurde eine erste Version präsentiert. Funktionsprinzip und Aufbau haben sich seither kaum verändert: Brennstoffzellen bestehen aus Kammern mit je zwei Elektroden, einer Anode und einer Kathode, zwischen denen sich ein elektrisch leitender "Elektrolyt" befindet. Der einen Elektrode wird Brennstoff zugeführt, etwa Wasserstoff, der anderen der zur Verbrennung nötige Sauerstoff. Anstatt wie in der berüchtigten "Knallgasreaktion" äusserst heftig zu Wasser zu reagieren, verläuft die Reaktion in der Brennstoffzelle an den räumlich getrennten Elektroden. Die bei der Reaktion frei werdende Energie erzeugt elektrischen Gleichstrom und Wärme.

... mehr zu:
»Brennstoffzelle »SOFC


Geschieht dies bei Temperaturen unter 250ºC, wird von Nieder- und Mitteltemperatur-Brennstoffzellen gesprochen. Diese mit Wasserstoff betriebenen Brennstoffzellen treiben etwa Autos und U-Boote an. Entsprechend verkleinert verleihen sie Batterien und Akkus in mobilen Geräten wie Handys oder Laptops den nötigen Schnauf.

Manche mögens heiss

In Heizkraftwerken kommen dagegen Hochtemperatur-Brennstoffzellen zum Einsatz, wie sie auch an der Empa entwickelt werden. Diese so genannten Festoxid-Brennstoffzellen (Solid Oxide Fuel Cells, SOFC) mögen es in der Tat heiss. Bei Temperaturen zwischen 600 und 1100ºC betrieben, sind SOFC nicht besonders wählerisch, was den Brennstoff angeht; sie funktionieren mit natürlichem Erdgas und Erdöl, aber auch mit erneuerbaren Brennstoffen wie Biogas. Selbst Verunreinigungen wie Schwefel oder Stickstoff tolerieren die SOFC, was eine teure Aufbereitung der Energieträger überflüssig macht.

"Hochtemperatur-Brennstoffzellen eignen sich vor allem für einen Einsatz in Industrieanlagen, die ohnehin viel Wärme produzieren. Dort könnte dann die anfallende Abwärme zur Stromerzeugung genutzt werden", sagt der Experte für Brennstoffzellen Peter Holtappels von der Empa-Abteilung Hochleistungskeramik, der das diesjährige Fuel Cell-Symposium organisiert. Aber auch als autonome, dezentrale Strom- und Wärmequellen in Wohnhäusern kämen SOFC in Frage. Zudem entstehen in einer SOFC - wie in allen Brennstoffzellen - keine schädlichen Abgase; beim Betrieb mit Wasserstoff entsteht reiner Wasserdampf. Werden andere Brennstoffe eingesetzt, gibt die SOFC zusätzlich lediglich Kohlendioxid ab - kein Rauch, kein Russ, keine giftigen Abgase.

Gebäude heizen und Strom liefern

Um Brennstoffzellen für den "Hausgebrauch" zu optimieren, kommen auch Computermodelle zum Einsatz. In dem von der EU geförderten Projekt "GenFC" (Generic Fuel Cell Modelling Environment) entwickelt die Empa-Forscherin Anne Haas Modelle, mit deren Hilfe Brennstoffzellen auf ihre Tauglichkeit in verschiedenen Anwendungsgebieten überprüft werden. Ganze Gebäude sowie die zugehörige Haustechnik - etwa Heizungs- und Kühlsysteme - werden am Computer simuliert. "Dabei interessieren uns vor allem der Komfort für die BewohnerInnen und der dazu nötige Energiebedarf", so Haas.

Kinderkrankheiten der Festoxid-Brennstoffzellen

Die SOFC-Technologie hat derzeit allerdings noch einige Probleme. Um den hohen Temperaturen über längere Zeit standzuhalten, ohne sich zu zersetzen, zu schmelzen oder mit anderen Bestandteilen beziehungsweise Stoffen zu reagieren, müssen die Materialien extrem widerstandsfähig sein. "Massgeschneiderte" Werkstoffe aus Hochleistungskeramik trotzen nicht nur der Hitze, sondern haben darüber hinaus weitere nützliche Eigenschaften; so leiten sie beispielsweise den elektrischen Strom in Form von Elektronen oder Ionen und können als feste Elektrolyte eingesetzt werden - daher auch die Bezeichnung Festoxid-Brennstoffzelle.

"Trotzdem ist die Lebensdauer einer Festoxid-Brennstoffzelle derzeit noch auf einige Monate beschränkt", sagt Peter Holtappels. Das stehe einer weiten Verbreitung der Technologie im Wege. "Denn wer will schon zweimal im Jahr seine Heizung ersetzen lassen?" Zudem seien die Herstellungskosten in der Grössenordnung von rund 100 000 Franken für eine gekoppelte Kraft-Wärme-Einheit eines Einfamilienhauses auch zu hoch.

"Wunderwerkstoff" Perowskit an der Empa

Damit sich die Hochtemperatur-Brennstoffzelle am Markt durchsetzen kann, müssen ihre Lebensdauer erhöht sowie die Material- und Herstellungskosten reduziert werden. Die Empa entwickelt dafür neuartige keramische Werkstoffe, die dann - zu den verschiedenen Komponenten wie Anode, Kathode oder Elektrolyt verarbeitet - in Brennstoffzellen eingesetzt werden. Dies sind beispielsweise verschiedene Perowskite, Materialien mit einer speziellen Kristallstruktur, aus denen unter anderem der Erdmantel besteht. Die Materialeigenschaften dieser "chemischen Chamäleons" lassen sich durch den Austausch bestimmter Elemente im Kristallgitter gezielt verändern. Dadurch entstehen neuartige Funktionsmaterialien, etwa ionisch leitende Festkörperelektrolyte, aber auch metallisch anmutende Materialien für die Elektroden. "Perowskite können fast alles", sagt Anke Weidenkaff von der Abteilung Festkörperchemie und -katalyse. Ihr Team entwickelt und charakterisiert neue Perowskite, die nicht nur in Brennstoffzellen, sondern auch in der Computer- und Halbleiterindustrie zum Einsatz kommen. Zudem könnten Perowskite in Zukunft teure und seltene Edelmetalle in Abgaskatalysatoren von Autos ersetzen, ist Weidenkaff zuversichtlich.

Weitere Informationen:
Dr. Peter Holtappels, Abt. Hochleistungskeramik, Tel. +41 44 823 41 29, peter.holtappels@empa.ch
Dr. Anne Haas, Abt. Bautechnologien, Tel. +41 44 823 43 57, anne.haas@empa.ch
Dr. Anke Weidenkaff, Abt. Festkörperchemie und -katalyse, Tel. +41 44 823 40 67, anke.weidenkaff@empa.ch

Rémy Nideröst | idw
Weitere Informationen:
http://www.empa.ch

Weitere Berichte zu: Brennstoffzelle SOFC

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Über intelligente IT-Systeme und große Datenberge
17.01.2017 | Karlsruher Institut für Technologie

nachricht Aquakulturen und Fangquoten – was hilft gegen Überfischung?
16.01.2017 | Wissenschaft im Dialog gGmbH

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungsnachrichten

Wie das Wissen in der Technik entsteht

17.01.2017 | Förderungen Preise

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik