Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserpolitur beschleunigt Oberflächenfinish von dentalen und blutführenden Implantaten

10.01.2013
Am 28. November 2012 präsentierten die Partner des BMWi-geförderten Projekts »MediSurf« in Aachen ihre Forschungsergebnisse.

Ein Konsortium von sieben Projektpartnern stellte sich unter der Leitung des Fraunhofer-Instituts für Lasertechnik ILT der Aufgabe, die Fertigungszeit von dentalen und blutführenden Implantaten zu senken bei hoher Bio- und Hämokompatibilität der Bauteile. Dabei wurde unter anderem eine flexible und kostengünstige Anlage zum automatisierten Polieren von Implantaten entwickelt.


Unbehandelte und laserpolierte Komponente des Herzunterstützungssystems INCOR aus Titan.
Fraunhofer ILT, Aachen/Volker Lannert

Eine große Rolle beim erfolgreichen Einsetzen eines Implantats spielt dessen Oberflächenbeschaffenheit. Beispielsweise erfordern Knochenimplantate eine poröse Struktur, damit Zellen gut einwachsen können. Andere Implantate wiederum benötigen eine möglichst glatte Oberfläche, damit sich daran keine Bakterien ansiedeln können und das umliegende Gewebe nicht geschädigt wird. Diese Implantate sind Forschungsgegenstand des Projekts »MediSurf«, das nun seinen Abschluss gefunden hat.

Einen Schwerpunkt bildete die Oberflächenoptimierung des Herzunterstützungssystems INCOR der Firma Berlin Heart aus Titan mit dem Ziel, dessen Fertigungszeit zu senken und gleichzeitig eine hohe Hämokompatibilität zu garantieren. Das bedeutet, dass Blutkörper in geringstmöglichem Maß vom Implantat geschädigt werden oder sich an ihm festsetzen können, so dass unter anderem die Entstehung von Thromben stark reduziert und somit das Herzinfarkt- und Schlaganfallrisiko signifikant gesenkt werden kann.

Zunächst musste hierzu die Frage geklärt werden, ob eine laserbasierte Oberflächenpolitur dieselbe Hämokompatibilität erreichen kann wie die konventionell eingesetzte manuelle Politur. Forscher des Fraunhofer ILT haben dafür ein Verfahren zur Laserpolitur blutführender Implantate entwickelt. »Es ist uns gelungen, die Mikrorauheit der Oberfläche so zu reduzieren, dass das Implantat eine bestmögliche Hämokompatibilität aufweist. Allerdings gab es im Vorfeld keine Informationen darüber, wie die Oberfläche zu diesem Zweck beschaffen sein muss«, erklärt Projektleiter Christian Nüsser vom Fraunhofer ILT. »So mussten wir viele verschiedene Parameter erproben, um das gewünschte Ergebnis zu erreichen.«

Laserpolitur: schneller, sauberer und umweltfreundlicher
Getestet wurden die Implantate auf ihre Hämokompatibilität schließlich vom Universitätsklinikum Münster (UKM). Das Resultat: Laserpolierte Implantate weisen dieselbe Hämokompatibilität auf wie manuell polierte. Jedoch ist die Laserpolitur rund 30-40 Mal schneller als die manuelle Politur. Bei einer großen Losgröße bedeutet dies eine enorme Senkung der Produktionskosten. Zudem weist die Laserpolitur eine wesentlich höhere Reproduzierbarkeit auf. Sie gewährleistet eine homogene Rauheit auf der gesamten Oberfläche einer Freiformgeometrie, auch an Ecken und Kanten, die bei einer manuellen Politur nur schwer erreicht werden können. Anders als bei konventionellen Bearbeitungsverfahren werden die Kanten beim Laserpolieren nahezu nicht verrundet, was eine hohe Geometrietreue des Bauteils garantiert. Ein weiterer Vorteil der Laserpolitur liegt in ihrer höheren Sauberkeit und umweltfreundlicheren Fertigung. Da im Gegensatz zur manuellen Politur keine Polier- und Schleifmittel verwendet werden, bleiben keine chemischen Rückstände am Implantat zurück.

Kostengünstige und flexible Maschinentechnik für die Serienfertigung

Neben dem Polierverfahren wurde am Fraunhofer ILT auch eine Prototypenanlage für die automatisierte Laserpolitur von Implantaten entwickelt. Dazu haben die Wissenschaftler eine Glovebox erstmals mit einem 6-Achs-Knickarm-Roboter ausgerüstet, der die Implantate greifen und ein Magazin eigenständig abarbeiten kann. Diese automatisierte Maschinentechnik gestaltet den gesamten Bearbeitungsprozess kostengünstiger und flexibler und eignet sich für die industrielle Serienfertigung.

Projektpartner

BEGO Implant Systems GmbH & Co. KG
Berlin Heart GmbH
Clean-Lasersysteme GmbH
DENTSPLY Implants Manufacturing GmbH
Fraunhofer-Institut für Lasertechnik ILT
Musterbau Galetzka
Universitätsklinikum Münster, Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie

Ansprechpartner

Dipl.-Ing. Christian Nüsser
Gruppe Polieren
Telefon +49 241 8906-669
christian.nuesser@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Dr.-Ing. Edgar Willenborg
Leiter der Gruppe Polieren
Telefon +49 241 8906-213
edgar.willenborg@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen

Axel Bauer | Fraunhofer-Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics