Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TCO-Nanopartikel: druckbare Elektronik auf Kunststoff-Folien

10.10.2011
Transparente leitfähige Schichten aus so genannten TCO (transparent conducting oxides) finden sich heute in vielen alltäglichen Anwendungen. Ihre Rolle als transparente Elektroden in Displays, Touch Screen Panels und Flachbildschirmen ist in der modernen Kommunikationstechnologie nicht mehr wegzudenken.

Forscher am INM – Leibniz-Institut für Neue Materialien haben nun ein Verfahren entwickelt, bei dem sie TCO Nanopartikel durch Tiefdruckverfahren direkt auf Kunststofffolien aufbringen können. Damit wird das strukturierte Drucken von transparenten Leiterstrukturen auf Folien möglich.

Der Programmbereich „Optische Materialien“ des INM stellt diese Entwicklung auf der MATERIALICA in München aus: vom 18.-20. Oktober, Halle A6, Stand 302, Smart Materials, SchauPlatz Nano.

„Wir stellen aus den transparenten leitfähigen Oxiden besondere Nanopartikel her“ erklärt Peter William de Oliveira, Leiter des Programmbereichs „Optische Materialien“. „Durch Zugabe eines Lösungsmittels und eines speziellen Binders lassen sich diese modifizierten TCO Nanopartikel als „Tinte“ mit einer Druckplatte direkt per Tiefdruck auf die Folie aufbringen. “ so Oliveira weiter. Dieses Verfahren habe mehrere Vorteile: Der Tiefdruck ermöglicht es, mit nur einem Prozess-Schritt strukturierte TCO-Schichten kostengünstig zu drucken.

Wegen der UV-Härtung bei niedrigen Temperaturen unter 150 °C lassen sich auch dünne Kunststofffolien beschichten. Dabei erfüllt der Binder mehrere Aufgaben: Er bewirkt nicht nur eine gute Adhäsion der TCO Nanopartikel zum Substrat sondern erhöht auch die Flexibilität der TCO-Schichten: Wegen dieser guten Fixierung bleibt die Leitfähigkeit selbst beim Verbiegen der Folien erhalten - ein Vorteil gegenüber den gängigen Hochvakuum-Techniken, wie zum Beispiel dem Sputtern. Außerdem erhöht der Binder die Leitfähigkeit der eingesetzten Oxide, obwohl er selbst nicht leitfähig ist. „Hier ist noch Potenzial für weitere Entwicklungen möglich“ erklärt der Physiker de Oliveira, „wenn wir es schaffen, auch den Binder leitfähig zu machen, wird die Leitfähigkeit insgesamt steigen und der Flächenwiderstand weiter absinken“.

Durch die Beschichtung auf flexiblen Foliensubstraten ist die Beschichtung mit dem klassischen Rolle-zu-Rolle Verfahren möglich. Die ersten Versuche am INM dazu sind vielversprechend. Die Forscher sind sich einig, dass durch die Verwendung von strukturierten Walzen zukünftig auch große, strukturierte, leitfähige Flächen kostengünstig mit hohem Durchsatz gedruckt werden können, wenn erst einmal die Feinheiten für das Up-Scaling austariert sind.

Neben der Verwendung von TCO-Nanopartikeln arbeiten die Entwickler am INM auch mit dem nasschemischen Sol-Gel-Verfahren. Es eignet sich besonders für temperaturstabile Substrate wie zum Beispiel Glas oder Keramik. Die Härtung erfolgt bei diesem Verfahren bei Temperaturen über 450 °C. Neben großflächigen Substraten lassen sich so auch komplexere Geometrien wie Rohre oder Formkörper beschichten. „Auch hier liegt der Vorteil bei den Kosten“ sagt der Programmbereichsleiter. Mit Vakuum-Beschichtungsverfahren, wie z.B. der Sputter-Methode, werden für großflächige Beschichtungen teure Hochvakuumapparaturen und große TCO-Targets benötigt; die gleichmäßige Beschichtung von gekrümmten Substraten ist außerdem über diesen Weg nur bedingt möglich.

Das Material der Wahl ist auch am INM hauptsächlich Zinn dotiertes Indium Oxid (Indium Tin Oxide, ITO). Wegen der abnehmenden Ressourcen und des hohen Rohstoffpreises für Indium testen die Forscher am INM auch zunehmend alternative transparente Oxide, wie zum Beispiel Aluminium dotiertes Zinkoxid (AZO) oder Antimon dotiertes Zinnoxid (ATO).

Diese und weitere industrielle Anwendungen zeigt das INM auf der internationalen Messe „MATERIALICA 2011“. Dazu zählen vor allem Entwicklungen zu speziellen Eigenschaften, wie zum Beispiel diffusionshemmende oder korrosionsbeständige Beschichtungen, Antireflexbeschichtungen sowie Photolithographie mit Silber für druckbare Elektronik.

Ansprechpartner:

Dr. Peter William de Oliveira
INM - Leibniz-Institut für Neue Materialien gGmbH
Tel: (+49) 681 9300 148
peter.oliveira@inm-gmbh.de
Vortrag auf der MATERIALICA:
„Materialien für druckbare Elektronik“
am 18. Oktober
im Kongress „Design“
von 10.00 bis 10.30 Uhr
Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung folgen sie den wiederkehrenden Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig nutzen?

Das INM - Leibniz-Institut für Neue Materialien gGmbH mit Sitz in Saarbrücken ist ein international sichtbares Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V. und beschäftigt rund 190 Mitarbeiter. Seine Forschung gliedert sich in die drei Felder Chemische Nanotechnologie, Grenzflächenmaterialien und Materialien in der Biologie.

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de
http://www.materialica.de/

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Boden – Grundlage des Lebens / Bodenforscher auf der Internationalen Grünen Woche
16.01.2018 | Helmholtz-Zentrum für Umweltforschung - UFZ

nachricht EMAG auf der GrindTec 2018: Kleine Bauteile – große Präzision
11.01.2018 | EMAG GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungsnachrichten

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungsnachrichten

CES Innovation Award für kombinierte Blick- und Spracheingabe im Auto

23.01.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics