Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kompaktes Radar mit Durchblick

20.03.2013
Durch Holz, Pappe oder Kunststoff schauen – das gelingt dem menschlichen Auge nicht. Was uns verborgen bleibt, macht ein kompaktes, modular aufgebautes Radar sichtbar: Der Millimeterwellensensor durchdringt nicht transparente Stoffe.

Er sendet im Hochfrequenzbereich zwischen 75 und 110 GHz und eignet sich für unterschiedlichste Anwendungsbereiche – von der Flugsicherheit über die Logistik und Industriesensorik bis hin zur Medizintechnik. Einen Prototyp des Radars präsentieren Fraunhofer-Forscher vom 8. bis 12. April auf der Hannover Messe in Halle 2, Stand D18.


Das W-Band-Radar ist mit einer breitbandigen 3-Kanal-Antenne mit dielektrischen Linsen ausgestattet. © Fraunhofer IAF

Langsam, ganz langsam nähert sich der Rettungshubschrauber der Bergwacht der Unfallstelle. Kurz zuvor war ein Notruf von zwei Schneeschuhwanderern am Stützpunkt eingegangen. Einer der beiden Männer hatte sich verletzt, ein Abstieg war nicht mehr möglich. Vorsichtig setzt der Pilot zur Landung an. Ein riskantes Manöver – Neuschnee erschwert den Landeanflug. Durch den Rotorabwind wird der weiche, lockere Schnee aufgewirbelt, binnen Sekunden bildet sich eine Schneeglocke um den Hubschrauber. Bei diesem Whiteout verliert der Pilot jeden Bezugspunkt, er weiß nicht mehr, ob es bergauf oder bergab geht.

Künftig sollen solche schwierigen Landemanöver problemlos gelingen: Forscher vom Fraunhofer-Institut für Angewandte Festkörperphysik IAF, für Produktionstechnik und Automatisierung IPA sowie für Zuverlässigkeit und Mikrointegration IZM entwickeln gemeinsam ein Radar, das trotz Schneewolken, Staub oder Nebel exakte Höhen- und Bodenabstandsdaten als Landehilfe liefert.

Dieses Radar arbeitet mit Millimeterwellen im Frequenzbereich von 75 bis 110 GHz – dem W-Band – und kann selbst bei schwierigen Sichtverhältnissen auch kleine Objekte aus der Distanz erkennen. Die Reichweite beträgt bis zu drei Kilometer. Im Gegensatz zu optischen Sensoren durchleuchtet der Millimeterwellensensor alle dielektrischen, also elektrisch schwach- oder nichtleitenden, nichtmetallischen und nicht transparenten Stoffe wie Kleidung, Kunststoffplatten, Papier, Holz oder eben Schnee und Nebel.

Dies prädestiniert das W-Band-Radar für vielfältige Anwendungsmöglichkeiten, die von der Verkehrskontrolle über die Medizintechnik bis hin zur Logistik und Industriesensorik, etwa zur Überwachung von Containerhäfen oder von Produktionsprozessen reichen. »Überall dort, wo andere Sensortechnologien in Herstellungsprozessen aufgrund von hohen Temperaturen oder eingeschränkter Sicht versagen, kann das W-Band-Radar eingesetzt werden. So eignet es sich etwa als Füllstandsensor in Mehlsilos, wo es beim Einfüllen der Schüttware zu starker Staubbildung kommt«, erläutert Dr. Axel Hülsmann, Ingenieur am IAF. Ein weiterer Vorteil des Geräts: Im Gegensatz zu Röntgenscannern ist es nicht gesundheitsschädlich, es arbeitet mit kurzwelligen Strahlen im Millimeterbereich. Die Sendeleistung liegt bei 10 Milliwatt. Zum Vergleich: Die eines Handys rangiert bei 1000 Milliwatt.

Nicht größer als eine Zigarettenschachtel

Bisherige Radarsysteme – basierend auf Keramiksubstraten – sind teuer, groß und vier bis fünf Kilo schwer. Die Einsatzmöglichkeiten sind begrenzt, sie konzentrieren sich vor allem auf den militärischen Bereich. Die Entwicklung der Fraunhofer-Forscher hingegen ist modular aufgebaut, kostengünstig, energieeffizienter, höher auflösend und universell einsetzbar. Mit der neuartigen Technologie lässt sich der Frequenzbereich um 100 GHz und höher problemlos adressieren.

Durch die kürzeren Wellenlängen von rund drei Millimeter fällt das W-Band-Radar kompakt aus. Das komplette System aus Galliumarsenid-Halbleitertechnik ist nicht größer als eine Zigarettenschachtel. Neben der digitalen Signalverarbeitung enthält es ein Hochfrequenzmodul, einen Signalprozessor sowie eine Sende- und Empfangsantenne mit dielektrischen Linsen. »Da wir eine dielektrische Antenne verwenden, ist der Öffnungswinkel frei wählbar. Wir können also sowohl große Flächen im Nahbereich erfassen als auch kleine, weit entfernte Objekte«, sagt Hülsmann. So sei es ohne weiteres möglich, einen mehrere hundert Meter breiten Zaun zu überwachen, etwa am Hamburger Containerhafen. »Überwachungskameras liefern bei dichtem Nebel, wie er oft am Elbehafen vorherrscht, keine hochauflösenden Bilder mehr. Daher patroullieren bei Schlechtwetterlage häufig Sicherheitskräfte mit Hundestaffeln«, weiß der Forscher.

Nach dem Vorbild der Fledermaus

Doch wie funktioniert der Millimeterwellensensor? »Im Prinzip lässt sich unser System mit dem der Fledermaus vergleichen. Die Ultraschall-Laute, die Fledermäuse ausstoßen, werden von Mauern, Ästen, Drähten, Motten und Mücken echoartig zurückgeworfen. An diesen Echos hören Fledermäuse, was sich vor ihnen befindet und unterscheiden Beute von Hindernissen. Wäre nichts im Weg, käme auch kein Echo zurück. Sie sehen also mit den Ohren«, erklärt Hülsmann. »Unser Radar sendet Signale aus, die von den beobachteten Objekten reflektiert werden. Sende- und Empfangssignal werden mithilfe numerischer Algorithmen miteinander verglichen. Anhand dieses Vergleichs lassen sich Entfernung, Größe, Dicke und Geschwindigkeit des Objekts berechnen. Bewegt sich dieses nicht, ändert sich auch das Signal nicht.« Die so ermittelten Messdaten können über eine USB-Schnittstelle an einen PC übertragen werden. Auch die Anbindung an andere bereits bestehende Systeme ist möglich, etwa über CAN-BUS-Schnittstellen.

Die Forscher präsentieren einen Prototyp des W-Band-Radar erstmals vom 8. bis 12. April auf der Hannover Messe am Fraunhofer-Gemeinschaftsstand in Halle 2, Stand D18. Am Beispiel zweier Wassersäulen, in denen Nebel aufsteigt, demonstrieren sie die Funktionsweise als Füllstandssensor: Während ein optischer Sensor durch den Nebel getäuscht wird und nur bis zur Nebelschicht misst, durchdringt das Radar den Dunst und berechnet zuverlässig den aktuellen Wasserstand. In zwei Jahren soll das System marktreif sein. Dann wollen die Experten mit dem Mehrkanalradar nicht nur Abstand und Geschwindigkeit von Objekten detektieren, sondern deren exakte Position.

Dr.-Ing.AxelHülsmann | Fraunhofer-Institut
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Maerz/kompaktes-radar-mit-durchblick.html

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Laser World of Photonics 2017: Abhörsicher kommunizieren mit verschränkten Photonen
22.06.2017 | Fraunhofer-Gesellschaft

nachricht EMO 2017: Smarte Lösungen für Produktionsoptimierung und Sägetechnologie
20.06.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften

'Fix Me Another Marguerite!'

23.06.2017 | Biowissenschaften Chemie