Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kompaktes Radar mit Durchblick

20.03.2013
Durch Holz, Pappe oder Kunststoff schauen – das gelingt dem menschlichen Auge nicht. Was uns verborgen bleibt, macht ein kompaktes, modular aufgebautes Radar sichtbar: Der Millimeterwellensensor durchdringt nicht transparente Stoffe.

Er sendet im Hochfrequenzbereich zwischen 75 und 110 GHz und eignet sich für unterschiedlichste Anwendungsbereiche – von der Flugsicherheit über die Logistik und Industriesensorik bis hin zur Medizintechnik. Einen Prototyp des Radars präsentieren Fraunhofer-Forscher vom 8. bis 12. April auf der Hannover Messe in Halle 2, Stand D18.


Das W-Band-Radar ist mit einer breitbandigen 3-Kanal-Antenne mit dielektrischen Linsen ausgestattet. © Fraunhofer IAF

Langsam, ganz langsam nähert sich der Rettungshubschrauber der Bergwacht der Unfallstelle. Kurz zuvor war ein Notruf von zwei Schneeschuhwanderern am Stützpunkt eingegangen. Einer der beiden Männer hatte sich verletzt, ein Abstieg war nicht mehr möglich. Vorsichtig setzt der Pilot zur Landung an. Ein riskantes Manöver – Neuschnee erschwert den Landeanflug. Durch den Rotorabwind wird der weiche, lockere Schnee aufgewirbelt, binnen Sekunden bildet sich eine Schneeglocke um den Hubschrauber. Bei diesem Whiteout verliert der Pilot jeden Bezugspunkt, er weiß nicht mehr, ob es bergauf oder bergab geht.

Künftig sollen solche schwierigen Landemanöver problemlos gelingen: Forscher vom Fraunhofer-Institut für Angewandte Festkörperphysik IAF, für Produktionstechnik und Automatisierung IPA sowie für Zuverlässigkeit und Mikrointegration IZM entwickeln gemeinsam ein Radar, das trotz Schneewolken, Staub oder Nebel exakte Höhen- und Bodenabstandsdaten als Landehilfe liefert.

Dieses Radar arbeitet mit Millimeterwellen im Frequenzbereich von 75 bis 110 GHz – dem W-Band – und kann selbst bei schwierigen Sichtverhältnissen auch kleine Objekte aus der Distanz erkennen. Die Reichweite beträgt bis zu drei Kilometer. Im Gegensatz zu optischen Sensoren durchleuchtet der Millimeterwellensensor alle dielektrischen, also elektrisch schwach- oder nichtleitenden, nichtmetallischen und nicht transparenten Stoffe wie Kleidung, Kunststoffplatten, Papier, Holz oder eben Schnee und Nebel.

Dies prädestiniert das W-Band-Radar für vielfältige Anwendungsmöglichkeiten, die von der Verkehrskontrolle über die Medizintechnik bis hin zur Logistik und Industriesensorik, etwa zur Überwachung von Containerhäfen oder von Produktionsprozessen reichen. »Überall dort, wo andere Sensortechnologien in Herstellungsprozessen aufgrund von hohen Temperaturen oder eingeschränkter Sicht versagen, kann das W-Band-Radar eingesetzt werden. So eignet es sich etwa als Füllstandsensor in Mehlsilos, wo es beim Einfüllen der Schüttware zu starker Staubbildung kommt«, erläutert Dr. Axel Hülsmann, Ingenieur am IAF. Ein weiterer Vorteil des Geräts: Im Gegensatz zu Röntgenscannern ist es nicht gesundheitsschädlich, es arbeitet mit kurzwelligen Strahlen im Millimeterbereich. Die Sendeleistung liegt bei 10 Milliwatt. Zum Vergleich: Die eines Handys rangiert bei 1000 Milliwatt.

Nicht größer als eine Zigarettenschachtel

Bisherige Radarsysteme – basierend auf Keramiksubstraten – sind teuer, groß und vier bis fünf Kilo schwer. Die Einsatzmöglichkeiten sind begrenzt, sie konzentrieren sich vor allem auf den militärischen Bereich. Die Entwicklung der Fraunhofer-Forscher hingegen ist modular aufgebaut, kostengünstig, energieeffizienter, höher auflösend und universell einsetzbar. Mit der neuartigen Technologie lässt sich der Frequenzbereich um 100 GHz und höher problemlos adressieren.

Durch die kürzeren Wellenlängen von rund drei Millimeter fällt das W-Band-Radar kompakt aus. Das komplette System aus Galliumarsenid-Halbleitertechnik ist nicht größer als eine Zigarettenschachtel. Neben der digitalen Signalverarbeitung enthält es ein Hochfrequenzmodul, einen Signalprozessor sowie eine Sende- und Empfangsantenne mit dielektrischen Linsen. »Da wir eine dielektrische Antenne verwenden, ist der Öffnungswinkel frei wählbar. Wir können also sowohl große Flächen im Nahbereich erfassen als auch kleine, weit entfernte Objekte«, sagt Hülsmann. So sei es ohne weiteres möglich, einen mehrere hundert Meter breiten Zaun zu überwachen, etwa am Hamburger Containerhafen. »Überwachungskameras liefern bei dichtem Nebel, wie er oft am Elbehafen vorherrscht, keine hochauflösenden Bilder mehr. Daher patroullieren bei Schlechtwetterlage häufig Sicherheitskräfte mit Hundestaffeln«, weiß der Forscher.

Nach dem Vorbild der Fledermaus

Doch wie funktioniert der Millimeterwellensensor? »Im Prinzip lässt sich unser System mit dem der Fledermaus vergleichen. Die Ultraschall-Laute, die Fledermäuse ausstoßen, werden von Mauern, Ästen, Drähten, Motten und Mücken echoartig zurückgeworfen. An diesen Echos hören Fledermäuse, was sich vor ihnen befindet und unterscheiden Beute von Hindernissen. Wäre nichts im Weg, käme auch kein Echo zurück. Sie sehen also mit den Ohren«, erklärt Hülsmann. »Unser Radar sendet Signale aus, die von den beobachteten Objekten reflektiert werden. Sende- und Empfangssignal werden mithilfe numerischer Algorithmen miteinander verglichen. Anhand dieses Vergleichs lassen sich Entfernung, Größe, Dicke und Geschwindigkeit des Objekts berechnen. Bewegt sich dieses nicht, ändert sich auch das Signal nicht.« Die so ermittelten Messdaten können über eine USB-Schnittstelle an einen PC übertragen werden. Auch die Anbindung an andere bereits bestehende Systeme ist möglich, etwa über CAN-BUS-Schnittstellen.

Die Forscher präsentieren einen Prototyp des W-Band-Radar erstmals vom 8. bis 12. April auf der Hannover Messe am Fraunhofer-Gemeinschaftsstand in Halle 2, Stand D18. Am Beispiel zweier Wassersäulen, in denen Nebel aufsteigt, demonstrieren sie die Funktionsweise als Füllstandssensor: Während ein optischer Sensor durch den Nebel getäuscht wird und nur bis zur Nebelschicht misst, durchdringt das Radar den Dunst und berechnet zuverlässig den aktuellen Wasserstand. In zwei Jahren soll das System marktreif sein. Dann wollen die Experten mit dem Mehrkanalradar nicht nur Abstand und Geschwindigkeit von Objekten detektieren, sondern deren exakte Position.

Dr.-Ing.AxelHülsmann | Fraunhofer-Institut
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Maerz/kompaktes-radar-mit-durchblick.html

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Starker Auftritt von dormakaba auf der Messe Security Essen 2016
11.10.2016 | Kaba GmbH

nachricht Solarkollektoren aus Ultrahochleistungsbeton verbinden Energieeffizienz und Ästhetik
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ALMA beginnt Beobachtung der Sonne

18.01.2017 | Physik Astronomie

Textiler Hochwasserschutz erhöht Sicherheit

18.01.2017 | Architektur Bauwesen

Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern

18.01.2017 | Geowissenschaften