Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kompaktes Radar mit Durchblick

20.03.2013
Durch Holz, Pappe oder Kunststoff schauen – das gelingt dem menschlichen Auge nicht. Was uns verborgen bleibt, macht ein kompaktes, modular aufgebautes Radar sichtbar: Der Millimeterwellensensor durchdringt nicht transparente Stoffe.

Er sendet im Hochfrequenzbereich zwischen 75 und 110 GHz und eignet sich für unterschiedlichste Anwendungsbereiche – von der Flugsicherheit über die Logistik und Industriesensorik bis hin zur Medizintechnik. Einen Prototyp des Radars präsentieren Fraunhofer-Forscher vom 8. bis 12. April auf der Hannover Messe in Halle 2, Stand D18.


Das W-Band-Radar ist mit einer breitbandigen 3-Kanal-Antenne mit dielektrischen Linsen ausgestattet. © Fraunhofer IAF

Langsam, ganz langsam nähert sich der Rettungshubschrauber der Bergwacht der Unfallstelle. Kurz zuvor war ein Notruf von zwei Schneeschuhwanderern am Stützpunkt eingegangen. Einer der beiden Männer hatte sich verletzt, ein Abstieg war nicht mehr möglich. Vorsichtig setzt der Pilot zur Landung an. Ein riskantes Manöver – Neuschnee erschwert den Landeanflug. Durch den Rotorabwind wird der weiche, lockere Schnee aufgewirbelt, binnen Sekunden bildet sich eine Schneeglocke um den Hubschrauber. Bei diesem Whiteout verliert der Pilot jeden Bezugspunkt, er weiß nicht mehr, ob es bergauf oder bergab geht.

Künftig sollen solche schwierigen Landemanöver problemlos gelingen: Forscher vom Fraunhofer-Institut für Angewandte Festkörperphysik IAF, für Produktionstechnik und Automatisierung IPA sowie für Zuverlässigkeit und Mikrointegration IZM entwickeln gemeinsam ein Radar, das trotz Schneewolken, Staub oder Nebel exakte Höhen- und Bodenabstandsdaten als Landehilfe liefert.

Dieses Radar arbeitet mit Millimeterwellen im Frequenzbereich von 75 bis 110 GHz – dem W-Band – und kann selbst bei schwierigen Sichtverhältnissen auch kleine Objekte aus der Distanz erkennen. Die Reichweite beträgt bis zu drei Kilometer. Im Gegensatz zu optischen Sensoren durchleuchtet der Millimeterwellensensor alle dielektrischen, also elektrisch schwach- oder nichtleitenden, nichtmetallischen und nicht transparenten Stoffe wie Kleidung, Kunststoffplatten, Papier, Holz oder eben Schnee und Nebel.

Dies prädestiniert das W-Band-Radar für vielfältige Anwendungsmöglichkeiten, die von der Verkehrskontrolle über die Medizintechnik bis hin zur Logistik und Industriesensorik, etwa zur Überwachung von Containerhäfen oder von Produktionsprozessen reichen. »Überall dort, wo andere Sensortechnologien in Herstellungsprozessen aufgrund von hohen Temperaturen oder eingeschränkter Sicht versagen, kann das W-Band-Radar eingesetzt werden. So eignet es sich etwa als Füllstandsensor in Mehlsilos, wo es beim Einfüllen der Schüttware zu starker Staubbildung kommt«, erläutert Dr. Axel Hülsmann, Ingenieur am IAF. Ein weiterer Vorteil des Geräts: Im Gegensatz zu Röntgenscannern ist es nicht gesundheitsschädlich, es arbeitet mit kurzwelligen Strahlen im Millimeterbereich. Die Sendeleistung liegt bei 10 Milliwatt. Zum Vergleich: Die eines Handys rangiert bei 1000 Milliwatt.

Nicht größer als eine Zigarettenschachtel

Bisherige Radarsysteme – basierend auf Keramiksubstraten – sind teuer, groß und vier bis fünf Kilo schwer. Die Einsatzmöglichkeiten sind begrenzt, sie konzentrieren sich vor allem auf den militärischen Bereich. Die Entwicklung der Fraunhofer-Forscher hingegen ist modular aufgebaut, kostengünstig, energieeffizienter, höher auflösend und universell einsetzbar. Mit der neuartigen Technologie lässt sich der Frequenzbereich um 100 GHz und höher problemlos adressieren.

Durch die kürzeren Wellenlängen von rund drei Millimeter fällt das W-Band-Radar kompakt aus. Das komplette System aus Galliumarsenid-Halbleitertechnik ist nicht größer als eine Zigarettenschachtel. Neben der digitalen Signalverarbeitung enthält es ein Hochfrequenzmodul, einen Signalprozessor sowie eine Sende- und Empfangsantenne mit dielektrischen Linsen. »Da wir eine dielektrische Antenne verwenden, ist der Öffnungswinkel frei wählbar. Wir können also sowohl große Flächen im Nahbereich erfassen als auch kleine, weit entfernte Objekte«, sagt Hülsmann. So sei es ohne weiteres möglich, einen mehrere hundert Meter breiten Zaun zu überwachen, etwa am Hamburger Containerhafen. »Überwachungskameras liefern bei dichtem Nebel, wie er oft am Elbehafen vorherrscht, keine hochauflösenden Bilder mehr. Daher patroullieren bei Schlechtwetterlage häufig Sicherheitskräfte mit Hundestaffeln«, weiß der Forscher.

Nach dem Vorbild der Fledermaus

Doch wie funktioniert der Millimeterwellensensor? »Im Prinzip lässt sich unser System mit dem der Fledermaus vergleichen. Die Ultraschall-Laute, die Fledermäuse ausstoßen, werden von Mauern, Ästen, Drähten, Motten und Mücken echoartig zurückgeworfen. An diesen Echos hören Fledermäuse, was sich vor ihnen befindet und unterscheiden Beute von Hindernissen. Wäre nichts im Weg, käme auch kein Echo zurück. Sie sehen also mit den Ohren«, erklärt Hülsmann. »Unser Radar sendet Signale aus, die von den beobachteten Objekten reflektiert werden. Sende- und Empfangssignal werden mithilfe numerischer Algorithmen miteinander verglichen. Anhand dieses Vergleichs lassen sich Entfernung, Größe, Dicke und Geschwindigkeit des Objekts berechnen. Bewegt sich dieses nicht, ändert sich auch das Signal nicht.« Die so ermittelten Messdaten können über eine USB-Schnittstelle an einen PC übertragen werden. Auch die Anbindung an andere bereits bestehende Systeme ist möglich, etwa über CAN-BUS-Schnittstellen.

Die Forscher präsentieren einen Prototyp des W-Band-Radar erstmals vom 8. bis 12. April auf der Hannover Messe am Fraunhofer-Gemeinschaftsstand in Halle 2, Stand D18. Am Beispiel zweier Wassersäulen, in denen Nebel aufsteigt, demonstrieren sie die Funktionsweise als Füllstandssensor: Während ein optischer Sensor durch den Nebel getäuscht wird und nur bis zur Nebelschicht misst, durchdringt das Radar den Dunst und berechnet zuverlässig den aktuellen Wasserstand. In zwei Jahren soll das System marktreif sein. Dann wollen die Experten mit dem Mehrkanalradar nicht nur Abstand und Geschwindigkeit von Objekten detektieren, sondern deren exakte Position.

Dr.-Ing.AxelHülsmann | Fraunhofer-Institut
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Maerz/kompaktes-radar-mit-durchblick.html

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Neue Prozesstechnik ermöglicht Produktivitätssteigerung mit dem Laser
18.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Neue 3D-Kamera revolutioniert Einzelhandel
18.05.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie