Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dreidimensionale, transparente Mikrobauteile schneller und effizienter fertigen

08.10.2012
Auf der diesjährigen glasstec vom 23. - 26. Oktober 2012 in Düsseldorf stellt das Fraunhofer-Institut für Lasertechnik ILT auf dem Fraunhofer-Gemeinschaftsstand 15/E25 ein Laserfertigungsverfahren zur Strukturierung transparenter Materialien vor.
Mit diesem Verfahren lassen sich jetzt erstmals auch montierte Bauteile aus transparenten Materialien wie Glas mikrometergenau aus einem Block fertigen. Im Gegensatz zu abtragenden Verfahren zeichnet sich das Selektive Laserinduzierte Ätzen (ISLE) durch eine große Materialeffizienz aus.

Quarzglasröhrchen mit einem Durchmesser von einem Millimeter und einer Wandstärke von neun Mikrometern, Lochfelder mit Bohrungsdurchmessern von 50 Mikrometern, Mikrofluidikbauteile für die medizinische Diagnostik mit Kanälen von weniger als 10 Mikrometern Durchmesser: Die Abmessungen von Bauteilen in der Feinmechanik, der Medizin- und der Messtechnik werden zunehmend kleiner bei gleichzeitig steigender Komplexität.

ISLE-gefertigtes Mikrozahnrad im Größenvergleich.

Bildquelle: Fraunhofer ILT, Aachen/Volker Lannert

Beispielsweise müssen für die Uhrenindustrie sogenannte Uhrensteine präzise gefertigt und anschließend montiert werden. Derzeit werden diese Mikrobauteile von erfahrenen Fachkräften manuell durch Schleifen und Polieren hergestellt und montiert, was einen hohen Zeitaufwand erfordert. Zudem sind abtragende Verfahren stets mit Materialverlust von typischerweise 80% verbunden, was je nach Material einen erheblichen Kostenfaktor darstellt.

Aufgrund der geringen Größe der Mikrobauteile sind transparente, also »farblose«, Materialien für die manuelle Bearbeitung nicht geeignet, da sie für den Facharbeiter nicht gut genug sichtbar sind. In der Regel greifen Hersteller daher auf Rubin zurück, da dieses Material neben der Materialeigenschaft der großen Härte auch eine gut sichtbare, rötliche Färbung aufweist.

Selektives laserinduziertes Ätzen beschleunigt die Herstellung und erübrigt die Montage

Am Fraunhofer ILT wurde in Kooperation mit dem Lehrstuhl für Lasertechnik LLT der RWTH Aachen University ein Laserfertigungsverfahren entwickelt, mit dem sich der Fertigungsprozess von Mikrobauteilen aus transparenten Materialien zeitlich verkürzen sowie Material und Energie einsparen lässt. Nun haben die Experten das Selektive Laserinduzierte Ätzen (in-volume selective laser etching, ISLE) auf die Herstellung zusammengesetzter und montierter Bauteile übertragen. Damit wird eine Justierung und Montage der einzelnen Komponenten in mikromechanischen Systemen überflüssig. Die Belichtungszeit eines Zahnrades, das bereits auf einer Welle montiert und in einem Gehäuse eingebaut ist, beträgt nur noch rund 15 Minuten.
Der Prozess läuft folgendermaßen ab: Mittels ultrakurz gepulster Laserstrahlung wird ein transparentes Werkstück mit 3D-Auflösung im Volumen genau dort belichtet, wo Material entfernt werden soll. Das Material wird chemisch und physikalisch so verändert, dass es selektiv ätzbar wird. Im anschließenden nasschemischen Ätzprozess wird das belichtete Material entfernt, während das unbelichtete Material vom Ätzprozess nahezu nicht beeinflusst wird. Auf diese Weise lassen sich Mikrokanäle, Formbohrungen, strukturierte Bauteile sowie komplexe, zusammengesetzte, mechanische Komponenten und Systeme herstellen. Das ISLE-Verfahren kann neben Rubin auch für Saphir oder Glas verwendet werden. Es ist reproduzierbar und in der Lage, serienidentische Geometrieanforderungen der Bauteile zu gewährleisten. Dabei bietet das ISLE-Verfahren eine große Geometrie- und Designfreiheit. Formgenauigkeiten kleiner einem Mikrometer sowie Schnittfugen und Bohrungen mit extrem großen Aspektverhältnissen aufgrund des kleinen Fokusvolumens zeichnen das ISLE-Verfahren besonders aus. Mit dem ISLE-Verfahren lässt sich eine große Material- und Energieeffizienz realisieren, die mit abtragenden Verfahren auch bei fortschreitender Entwicklung prinzipiell nicht erreicht werden kann.

Skalierung des Laserfertigungsverfahrens für die industrielle Anwendung

Die zentrale Aufgabe der Aachener Forscher besteht nun darin, das ISLE-Verfahren den Herstellern von Mikrobauteilen zur Verfügung zu stellen. »Wir arbeiten an der kontinuierlichen Verbesserung der Skalierbarkeit unseres Verfahrens, um den zukünftigen Transfer von der Forschungseinrichtung in die industrielle Fertigung zu ermöglichen«, erklärt Dr. Dagmar Schaefer, Gruppenleiterin am Fraunhofer ILT. »Je nach Anwendung wird das ISLE-Verfahren individuell an die Anforderungen des Kunden angepasst. Die Erfüllung der geforderten Bauteilspezifikationen bei gleichzeitig ausreichend schneller Strukturierung ist für uns die größte Herausforderung.«

Die Geschwindigkeit der Belichtung liegt derzeit bei mehreren hundert Millimetern pro Sekunde. Ziel ist eine Steigerung auf mehrere Meter pro Sekunde. Für die Belichtung eines montierten, drei Millimeter großen Zahnrades von derzeit 15 Minuten würde dies eine Verringerung um den Faktor 10 bedeuten.
Mittelfristig soll durch die Vergrößerung der Laserleistung und der Repetitionsrate sowie der Verwendung schnellerer Strahlablenkungssysteme das Potenzial des entwickelten Verfahrens für eine individualisierte Massenproduktion realisiert werden. Die Fertigung von Mikrobauteilen in Klein- und Großserien soll ebenso wie die Massenproduktion individualisierter Bauteile dadurch kosteneffizienter und flexibler werden.

Ansprechpartner

Dr. Dagmar Schaefer
Leiterin der Gruppe 3D-Volumenstrukturierung
Telefon +49 241 8906-628
dagmar.schaefer@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen

Akad. Oberrat Dr. Ingomar Kelbassa
Stellv. Leiter des Lehrstuhls für Lasertechnik LLT der RWTH Aachen University
Telefon +49 241 8906-143
ingomar.kelbassa@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen

Axel Bauer | Fraunhofer ILT
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Intelligente Filter für innovative Leichtbaukonstruktionen
08.12.2016 | Technische Universität Bergakademie Freiberg

nachricht Mobile Learning und intelligente Contentlösungen im Fokus
08.12.2016 | time4you GmbH

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie