Antibiotika – Molekularer Rausschmeißer macht resistent

Viele bakterielle Infektionen können mit Antibiotika wirkungsvoll bekämpft werden – doch zu häufige Anwendung oder falscher Umgang mit den wertvollen Medikamenten haben Folgen: Immer mehr Bakterien werden resistent. Die Entwicklung neuer wirksamer Medikamente ist also dringend erforderlich.

Eine wichtige Ausgangsbasis dafür sind Kenntnisse über die Wirkmechanismen dieser Substanzen und der entstehenden Resistenzen. Hier setzt die Forschung des LMU-Wissenschaftlers Daniel Wilson an, der nun eine gängige Annahme zum Mechanismus der Tetrazyklin-Resistenz widerlegen konnte.

Tetrazykline sind eine große Familie häufig verschriebener Breitbandantibiotika. Wie die meisten Antibiotika docken sie an den bakteriellen Ribosomen an. Dort verhindern sie die Herstellung neuer Proteine, die für das Überleben und die Vermehrung der Krankheitserreger notwendig sind.
„Die Resistenz gegen Tetrazykline entwickelt sich auf mehreren verschiedenen Wegen“, erklärt Wilson, der auch dem Exzellenzcluster „Center for Integrated Protein Science Munich“ (CiPSM) angehört: Meistens werden die Antibiotika entweder mithilfe einer sogenannten Effluxpumpe direkt aus der Zelle beseitigt, oder das Tetrazyklin wird durch spezialisierte Schutzproteine vom Ribosom entfernt.

Schutzprotein verdrängt Antibiotkum

Bisher herrschte unter Wissenschaftlern die Annahme vor, dass diese Schutzproteine eher indirekt wirken, indem sie die räumliche Anordnung des Ribosoms so verändern, dass das Tetrazyklin nicht mehr angedockt bleiben kann. Mithilfe kryo-elektronenmikroskopischer Methoden rekonstruierte Wilson nun die dreidimensionale Struktur von Komplexen aus Ribosomen und dem Schutzprotein TetM und widerlegte so diese Theorie: „Wir konnten zeigen, dass TetM direkt an der Tetrazyklin-Bindungsstelle wirkt und das Antibiotikum aktiv von seinem Platz entfernt“, so Wilson.

„Unsere neuen Erkenntnisse zur Vermittlung der Tetrazyklin-Resistenz durch TetM können entscheidend dazu beitragen, eine neue Generation wirkungsvoller Tetrazyklin-Abkömmlinge zu entwickeln“, erläutert Wilson die therapeutischen Implikationen der Studie.
(PNAS 2012) göd

Publikation:
Structural basis for TetM-mediated tetracycline resistance
Alexandra Dönhöfer, Sibylle Franckenberg, Stephan Wickles, Otto Berninghausen, Roland Beckmann, and Daniel N. Wilson
PNAS Early Edition 1. Oktober 2012
doi: 10.1073/pnas.1208037109
www.pnas.org/cgi/doi/10.1073/pnas.1208037109

Kontakt:
Dr. Daniel Wilson
Gene Center
Phone: +49 89 2180 76903
Fax: +49 89 2180 76945
Mail: wilson@genzentrum.lmu.de
http://www.wilson.genzentrum.lmu.de/

Media Contact

Luise Dirscherl idw

Weitere Informationen:

http://www.uni-muenchen.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wie Kalziumionen in die Kraftwerke von Pflanzenzellen gelangen

Geführt von Prof. Dr. Markus Schwarzländer von der Westfälischen Wilhelms-Universität (WWU) Münster, entdeckte ein universitätsübergreifendes Team jüngst, wie Kalziumionen ihren Weg in die Mitochondrien von Pflanzenzellen finden. Der lebenswichtige Signalstoff…

Energie in Eisenform

Wasserstoff sicher und effizient transportieren. Grün erzeugte Energie in Form von Eisen transportieren: Das ist die Vision eines vom Bundesforschungsministerium geförderten Projekts unter der Koordination der Universität Duisburg-Essen (UDE). Mittels…

Hightech-Bildgebung für kleine und mittlere Unternehmen

TU Ilmenau an Bundesprojekt beteiligt: Die Technische Universität Ilmenau startet das 9,1-Millionen-Euro-Verbundprojekt Advanced Multimodal Imaging (AMI), das Industrieunternehmen durch Entwicklung und Anwendung multimodaler Bildgebung fit für die digitale Zukunft macht….

Partner & Förderer