Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

High Dynamic Range Imaging: Die nächste Generation der digitalen Fotografie und des Videos

08.03.2006


Wissenschaftler am Max-Planck-Institut für Informatik entwickelten eine einzigartige Lösung zur wirksamen Speicherung und Komprimierung von HDR Videos. HDRI schließt die Lücke zwischen der Photographie und dem menschlichen Sehvermögen. (Max-Planck-Institut für Informatik auf der CeBIT 2006 in Hannover, Halle 09, Stand, Stand B 43)



Die Nachfrage nach immer besserer Qualität von Photos und Filmen besteht bereits seit Beginn des Fernsehens, der Photographie und des Kinos. Ein gewaltiger Fortschritt wurde bereits durch die Digitalisierungstechnik erreicht, die heute überall vorherrscht. Ein beherrschender Trend, der zurzeit den Markt revolutioniert ist die Steigerung der Bildauflösung durch die Einführung von High Definition Fernsehern und Bildsensoren mit hoher Auflösung in Digitalkameras. Nun steht eine weitere digitale Revolution vor der Tür, die bekannt ist als "High Dynamic Range".



High Dynamic Range Imaging (HDRI) ist ein Zusammenspiel von neuen Technologien, die eine viel größere Bandbreite der Belichtung erlauben als herkömmliche digitale Techniken. Das Ziel ist die genaue Wiedergabe der Helligkeitswerte, die in realen Szenen vorkommen, vom direkten Sonnenlicht bis zum tiefsten Schatten. Dies bedeutet für die digitale Photographie, dass es eine Über- oder Unterbelichtung nicht mehr gibt, und jeder in der Lage ist, perfekte Aufnahmen ohne große Zusatzeinstellungen zu machen. Für das Fernsehen gilt, dass der Zuschauer mehr und mehr den Eindruck gewinnt, die reale Welt wie durch ein Fenster zu betrachten. Bei Computerspielen entsteht das Gefühl immer besser und realistischer in das Spielgeschehen eingetaucht zu sein.

Die Entwicklung von HDRI hat zum Ziel, die Lücke zwischen der Photographie und dem menschliche Sehvermögen zu schließen, denn das Auge ist der ultimative Qualitätsstandard. Das menschliche Auge kann einen ungeheuren Helligkeitsbereich erfassen, beginnend bei einem mondlosen Himmel(3*10-5 cd/m2) bis zu direktem Sonnenlicht (2*109 cd/m2). Das Auge kann simultan Helligkeitswerte von mindestens fünf Größenordnungen sehen. Im Gegensatz dazu sind die meisten digitalen Kameras und Monitore in der Lage, 2-3 Größenordnungen der Helligkeitswerte (dynamischer Bereich 1:100 - 1:1000, 40-60 dB) aufzunehmen oder wiederzugeben. Die nächste Generation von Monitoren und Kameras wird im Bereich des menschlichen Auges beginnen zu operieren.

Bevor HDR Fernsehen und Monitore auf dem Markt erscheinen werden, muss der gesamte Arbeitsvorgang von der Aufnahmetechnik, Bearbeitung und Wiedergabe entwickelt werden. Deutsche Firmen wie z.B. SPHERON VR und IMS CHIPS bieten Lösungen für HDR Bilder und Videoaufnahmen an. Zusätzlich wurden Dynamic Range Kameras für professionelle digitale Filme entwickelt, wie z.B. Dalsa’s Origin. Weitere Firmen sind in die Entwicklung von LCD Monitore für einen breiteren Helligkeitsbereich und für eine bessere Farbskala eingebunden. Erste Geräte dieser Art können bereits heute käuflich erworben werden, z.B. der HDR Monitor von BrightSide Technologies.

Wissenschaftler am Max-Planck-Institut für Informatik entwickelten eine einzigartige Lösung zur wirksamen Speicherung und Komprimierung von HDR Videos. Ihr Ziel ist es, ein Video-Format zu entwickeln, das genauso gut ist wie das menschliche Auge. Das bedeutet, dass die gespeicherten Informationen eingesetzt werden können bei allen zukünftigen Geräten, selbst wenn die Entwicklung solcher Geräte noch 10 Jahre dauern kann. Das Problem traditioneller Video Komprimierung (z.B., MPEG-4, ISO/IEC 14496-2/10) ist, das sie dafür vorgesehen ist, gerade genug Information zu verschlüsseln, die für die gegenwärtig existierende Geräte benötigt werden. Das bedeutet, dass mit der Entwicklung neuer Bildschirme die Qualität der gegenwärtigen herkömmlichen DVDs nicht mehr ausreicht. Um dieses Problem erst nicht aufkommen zu lassen, haben Wissenschaftler am Max-Planck-Institut für Informatik einen Verfahren für eine High Dynamic Range (HDR)Video Komprimierung entwickelt, das die komplette Farbinformation, die für das menschliche Auge sichtbar ist, speichert. HDR Video kann die Helligkeitsbereiche eines mondlosen Himmels bis zum direkten Sonnenlicht (bis zu 300dB) verschlüsseln und kann die komplette Farbskala des sichtbaren Lichtes wiedergeben. Diese zusätzlichen Informationen sind mehr als ausreichend, um die Videos mit der nächsten Generation von Bildschirmen abzuspielen.

In der Tat ist es jedoch nicht notwendig, auf die nächste Generation von Bildschirmen zu warten und sich für die Vorteile von HDR Videos mit den bereits existierenden TV Geräten und Computer Bildschirmen zu begeistern. Am Max-Planck-Institut für Informatik wurde ein HDR Video Spieler entwickelt, der eine optimale Wiedergabe der sowohl für HDR Videos als auch für Videos mit bester Qualität gewährleistet. Bedingt durch die Wahl eines derartigen Verfahrens ist man in der Lage viel besser Bildkontraste, Helligkeit und die Farbintensität zu optimieren, als es mit dem traditionellen Videosignal möglich wäre. Darüber hinaus kann die Bildwiedergabe viel besser mit der Beleuchtung der Umgebung abgestimmt werden, in dem sich das Fernsehgerät sich befindet.

Kontakt:
Dr. Karol Myszkowski
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
Email: karol@mpii.mpg.de
Phone: +49 (0)681 9325-429
Fax: +49 (0)681 9325-499

Saar - Uni - Presseteam | idw

Weitere Berichte zu: Dynamic HDR Komprimierung Monitor Photographie Range Video

Weitere Nachrichten aus der Kategorie Kommunikation Medien:

nachricht Virtuell und 360°: die Zukunft bewegter Bilder
04.10.2016 | Fachhochschule St. Pölten

nachricht Content-Marketing: In der Praxis angekommen - Studie zu Content-Marketing-Strategien
15.07.2016 | PFH Private Hochschule Göttingen

Alle Nachrichten aus der Kategorie: Kommunikation Medien >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops