Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kann das Gehirn bald mit Prothesen reden?

25.06.2010
Die Universität Bremen fördert verstärkt den Forschungsschwerpunkt „Neurotechnologie“ und macht sich auf den Weg zur Neuroprothese.

Wer nicht mehr sieht oder hört, wer nicht mehr gehen oder greifen kann, der wird in seiner Lebensqualität massiv eingeschränkt. In der Science Fiction Literatur gibt es jede Menge Lösungen dafür, zum Beispiel durch den Einsatz von voll funktionstüchtigen Ersatzkörperteilen. Doch was früher reine Fiktion war, wird durch den rasanten technischen Fortschritt immer mehr zur greifbaren Realität. Auch die Universität Bremen wird sich verstärkt an der Entwicklung von Neuroprothesen beteiligen und hat jetzt den Forschungsschwerpunkt „Neurotechnologie“ eingerichtet.

Tatsächlich könnten heute bereits Hand- und Armprothesen gefertigt werden, die von ihrer mechanischen Präzision und Differenziertheit in die Nähe des menschlichen Originals kommen. Die zentrale Herausforderung besteht jedoch darin, der Aktivität des zentralen Nervensystems Signale und Information zu entnehmen, mit denen diese Prothesen sinnvoll gesteuert werden können. Umgekehrt bereitet es für den heutigen Stand der Technologie kein Problem, Bilder oder Töne für Seh- oder Hörprothese aufzunehmen. Das Problem besteht darin, sie dem hoch komplexen Gehirn zugänglich zu machen.

Um die Vision Wirklichkeit werden zu lassen, bedarf es zum einen einer Technologie, welche die Signale des Gehirns sehr genau und in möglichst großer Vielfalt sicher und über lange Anwendungszeiträume erfassen kann bzw. Signale an das Gehirn übergeben kann. Hierfür ist zum anderen erheblich mehr Wissen über die Sprache des Gehirns notwendig. Nur unter diesen beiden Voraussetzungen kann zwischen der Sprache des technischen Prothesensystems und der des zentralen Nervensystems übersetzt und die notwendige beiderseitige Kommunikation ermöglicht werden.

Uni fördert den neuen Forschungsschwerpunkt „Neurotechnologie“

Nach einer intensiven Begutachtung hat sich die Universität Bremen entschieden, diesen Forschungsbereich langfristig zu fördern und dafür den interdisziplinären Forschungsschwerpunkt „Neurotechnologie“ einzurichten. Im Rahmen einer drei Jahre laufenden Förderung werden über 470.000 Euro für den Ausbau dieser Forschungsrichtung zur Verfügung gestellt. Innerhalb des Forschungsschwerpunktes werden Erfahrungen und Erkenntnisse aus den Bereichen der theoretischen Elektrotechnik & Mikroelektronik, Hochfrequenztechnik, Mikrosystemtechnik, Automatisierungstechnik, Psychologie & Kognitionsforschung, Neurophysik und der Neurobiologie gebündelt. So soll eine dauerhafte interdisziplinäre Vernetzung zum Erforschen von Neurotechnologien geschaffen werden.

Mit dem zentralen Nervensystem kommunizieren

Mit dem Forschungsschwerpunkt Neurotechnolgie sollen neue medizinische Anwendungsgebiete erschlossen werden. Viele Ärzte möchten neue Methoden für Behandlung und Rehabilitation von Patienten zur Verfügung haben. Bislang fehlen hierfür jedoch sichere, langzeitstabile „bi-direktionale Neurointerfaces“, also Schnittstellen für die Übertragung von Information von Außen in das zentrale Nervensystem sowie die Übertragung von Information aus dem zentralen Nervensystem in die externe Welt. Derartige bi-direktionale Schnittstellen würden es ermöglichen, mit Hilfe der gemessenen Hirnaktivität Prothesen und zahllose andere Hilfseinrichtungen für zum Teil schwerst beeinträchtigte Patienten zu steuern. Eine weitere, noch weit weniger erforschte, aber extrem wertvolle Anwendung ist zum Beispiel, visuelle Informationen aus der Umgebung und Tastempfindung von Prothesen direkt in das zentrale Nervensystem eines Patienten einzuspeisen.

Sprache des Gehirns verstehen

Ein weiterer Aspekt des Forschungsschwerpunktes ist es, die Sprache des Gehirns zu verstehen, um so mit dem zentralen Nervensystem kommunizieren zu können. Schon heute ist es möglich, Steuersignale für Prothesen und Geräte per EEG (Elektroenzephalografie) aus den komplexen Gemischen der Hirnaktivitäten zu extrahieren und damit Funktionen eines Computers oder Handlungen eines Roboters auszuwählen. Leider versagt die heutige Technik bei einem Drittel der Menschen, und die Informations-Übertragungsraten aus dem Gehirn sind gering. So ist man zurzeit noch weit davon entfernt, die einzelnen Finger einer Handprothese in Echtzeit ansteuern zu können – für einen gesunden Menschen eine Selbstverständlichkeit.

Die Einkopplung von Daten in das Gehirn ist noch einmal deutlich komplizierter. Dies scheitert heute noch vor allem an dem mangelnden Verständnis der Sprache des Gehirns und der bisherigen zur Verfügung stehenden Technologie. Einen zentralen Teil der medizintechnischen Grundlagenforschung stellen die Untersuchungen am zentralen Nervensystem von Ratten und Makaken dar. Sie erlauben die Erforschung der neurowissenschaftlichen Grundlagen für eine zielgerichtete Entwicklung der Neuroprothetik und die Erprobung vor dem ersten Einsatz am Menschen.

Wettbewerbsfähigkeit der Uni Bremen stärken

Gleichzeitig soll der Forschungsschwerpunkt die Wettbewerbsfähigkeit der Universität Bremen in der neurotechnologischen Grundlagenforschung erhöhen. Diese Maßnahme ist komplementär zu drei weiteren Forschungs- und Entwicklungsprojekten: dem aus dem „Innovationswettbewerb Medizintechnik des BMBF hervorgegangenen Projekt: KALOMED - Kabellose Erfassung lokaler Feldpotentiale und elektrische Stimulation der Großhirnrinde für medizinische Diagnostik und Neuroprothetik“ (http://www.kalomed.info); dem EU-Projekt „BRAIN“ (http://www.brain-project.org) und dem stärker anwendungsorientierten Projekt „Schnelle Brain Computer Interface (BCI)-Systeme für Alltagsanwendungen“ (http://www.fwbi-bremen.de/), in enger Zusammenarbeit mit dem Friedrich-Wilhelm-Bessel-Institut. KALOMED wird seit Mitte 2009 an der Universität Bremen zusammen mit der Abteilung für Epileptologie der Universitätsklinik Bonn und der Firma Brain Products GmbH erfolgreich durchgeführt. Das Ziel des Projektes ist es, ein System zu entwickeln, welches es ermöglicht, bei Menschen drahtlos medizinische Diagnostik am zentralen Nervensystem vorzunehmen und eine zukunftsweisende Schnittstelle für neuro-prothetische Anwendungen zu schaffen. Ein wichtiger Aspekt dieser Entwicklung ist, die Langzeitstabilität und Sicherheit des Systems. Die beiden Projekte BRAIN und sBCI untersuchen die Verbesserung von nicht invasiven Brain Computer Interfaces (BCI) und deren Einsatz in Alltagsanwendungen.

Weitere Informationen:

Universität Bremen
Fachbereich Physik / Elektrotechnik
Institut für Automatisierungstechnik
Prof. Dr.-Ing. Axel Gräser
Tel: 0421 218 62444
E-Mail: ag@iat.uni-bremen.de

Eberhard Scholz | idw
Weitere Informationen:
http://iat.uni-bremen.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Mit Nanopartikel-Tandems gegen den Herzinfarkt
01.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtuelle Realität für Bakterien
01.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik