Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klimaentwicklung ist keine Einbahnstraße

30.08.2012
Wie sich die Kohlendioxid-Konzentration in der Atmosphäre entwickelte, lässt sich langfristig an den Kalkablagerungen in der Tiefsee ablesen.

Durch die Verwitterung von Gesteinen wird nämlich der Luft Kohlendioxid entzogen. Über die Flüsse gelangt das chemisch gebundene Treibhausgas ins Meer und wird dort als Kalkablagerung gespeichert, zum Beispiel in kalkigen Mikrofossilen. Dieser Prozess führt langfristig zu einer globalen Abkühlung. Das konnten Forscher des Biodiversität und Klima Forschungszentrums (BIK-F) und der Goethe-Universität für die letzten rund 55 Millionen Jahre anhand von Tiefseebohrungen im äquatorialen Pazifik mit bisher unerreichter Genauigkeit


Ausfahrt der Joides Resolution von Honolulu Hawaii im Mai 2009 (Expedition 320/321). Im Hintergrund der Vulkankrater Diamond Head an der Südostküste Hawaiis (Copyright: Integrated Ocean Drilling Program/United States Implementing Organization (IODP/USIO))

Parallel zum Übergang vom Supertreibhaus zum Eiszeitalter fiel auch die Meerestiefe, unterhalb der das Kohlenstoffmineral Kalkspat vollständig aufgelöst wird (Karbonat-Kompensationstiefe). Das berichten die Forscher in der aktuellen Ausgabe der Fachzeitschrift Nature. Die Daten stammen aus Tiefseebohrungen in der Region beiderseits des äquatorialen Pazifiks, die für den globalen Kohlenstoffkreislauf äußerst produktiv ist. Während einer viermonatigen Expedition des US-amerikanischen Bohrschiffs JOIDES Resolution im Jahr 2009 bohrten die Expeditions-Teams in Wassertiefen von 4.300 bis 5.100 Metern. Sie entnahmen die Bohrkerne an acht Orten und über insgesamt 6.3 Kilometer Länge. Damit steht ein Klimaarchiv zur Verfügung, das die letzten 55 Millionen Jahre umspannt.

„Wir reden heute viel über das vom Menschen kurzfristig produzierte Kohlenstoffdioxid und die dadurch ausgelöste Klimaerwärmung“, sagt Prof. Heiko Pälike, einer der Expeditionsleiter. Er arbeitet seit Juni 2012 im MARUM - Zentrum für Marine Umwelt der Universität Bremen. „Über Jahrmillionen gesehen bestimmen allerdings andere Prozesse den Kohlenstoffkreislauf.“ Zum Beispiel Vulkaneruptionen, die große Mengen Kohlendioxid in die Atmosphäre ausstoßen. Andererseits sorgt die Verwitterung kalkhaltiger Gesteine dafür, dass Kohlendioxid wieder gebunden und dem Klimakreislauf entzogen wird. Die Bilanz des Kohlenstoffkreislaufs spiegelt sich im Ozean, und zwar in der Karbonat-Kompensationstiefe. Unterhalb dieser Grenze bleiben keine kalkhaltigen Partikel wie Kalkschalenreste von Meeresorganismen erhalten.

Im äquatorialen Pazifik lag die Grenzlinie vor rund 55 Millionen Jahren in 3.300 bis 3.600 Meter Tiefe. Zwischen 52 und 47 Millionen Jahre vor heute, als es auf unserem Planeten besonders warm war, flachte sie sogar bis auf 3.000 Meter Meerestiefe ab. Als die Erde vor 34 Millionen Jahren allmählich abkühlte und sich in der Antarktis erste Eisschilde bildeten, senkte sich die Karbonat-Tiefenlinie im Pazifik ab, und zwar auf bis zu 4.800 Meter vor 10,5 Millionen Jahren.

Die Tiefseeablagerungen belegen eindrucksvoll, dass Klima und Kohlenstoffkreislauf nie eine Einbahnstraße waren: „In den Ablagerungen aus der Zeit, die der großen antarktischen Vereisung vor 34 Millionen Jahren voranging, haben wir fünf Ereignisse beschrieben, in denen sich die Karbonat-Kompensationstiefe kurzfristig zwischen 200 und 900 Metern nach oben und unten bewegte“, sagt der Geowissenschaftler Prof. Jens Herrle, einer der Expeditionsteilnehmer: „Diese Ereignisse, die oft für Erwärmungs- und Abkühlungsphasen stehen, dauerten zwischen 250.000 und einer Million Jahre. Sie sind durch einen Wechsel innerhalb des marinen Planktons von kalkigen zu kieseligen Mikrofossilien gekennzeichnet.“

Aber auch für die jüngere Vergangenheit sind vergleichbare Episoden belegt. So vor rund 18,5 Millionen Jahren, als besagte Karbonat-Tiefenlinie um rund 600 Meter Richtung Meeresoberfläche anstieg – um zweieinhalb Millionen Jahre später wieder auf 4.700 Meter abzusinken. Heute liegt sie im Pazifik bei etwa 4.500 Meter.

Um die Ursachen dieser Schwankungen zu bestimmen, setzte das internationale Wissenschaftlerteam auf Computermodelle, die das System Erde und die wesentlichen dort ablaufenden Prozesse nachbilden. Dies war eine der Forschungsarbeiten der wissenschaftlichen Mitarbeiterin Dr. Cecily Chun aus der Arbeitsgruppe Paläontologie und Biogeochemie von Prof. Jens Herrle an der Goethe-Universität.

Publikation:
Heiko Pälike et al.: A Cenozoic record of the equatorial Pacific carbonate compensation depth, in Nature DOI: 10.1038/nature11360

Weitere Bilder zum Download finden Sie unter:
http://www2.uni-frankfurt.de/42930474/185

Bildtexte:
Bild 1: Ausfahrt der Joides Resolution von Honolulu Hawaii im Mai 2009 (Expedition 320/321). Im Hintergrund der Vulkankrater Diamond Head an der Südostküste Hawaiis (Copyright: Integrated Ocean Drilling Program/United States Implementing Organization (IODP/USIO))

Bild 2: Bohrlokationen der Expedition 320 im äquatorialen Pazifik (Copyright: IODP/USIO).

Bild 3: Bohrkern 1333B im Sedimentlabor auf dem Forschungsschiff Joides Resolution. Zu sehen ist der Übergang von braunen (links) zu weißen Sedimenten (rechts), die den Bereich der permanenten antarktischen Vereisung vor 34 Millionen Jahren (Eozän/Oligozän-Grenze) markieren (Copyright: Jens Herrle, Goethe Universität Frankfurt).

Bild 4: Teilnehmer der Expedition 320 mit Wissenschaftlern, Bohrteam und Mannschaft (Copyright: Integrated Ocean Drilling Program/United States Implementing Organization (IODP/USIO).

Informationen:
Prof. Jens Herrle, Arbeitsgruppe Paläontologie und Biogeochemie, Institut für Geowissenschaften der Goethe-Universität Frankfurt und LOEWE Biodiversität und Klima Forschungszentrum Frankfurt, Campus Riedberg, Tel.: (069) 798-40180; jens.herrle@em.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.
Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de
http://www2.uni-frankfurt.de/42930474/185

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Auf der Suche nach Hochtechnologiemetallen in Norddeutschland
26.06.2017 | Jacobs University Bremen gGmbH

nachricht Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur
22.06.2017 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie