Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stifterverbandspreis 2013 für Jens Frahm

05.06.2013
Göttinger Physiker wird für Weiterentwicklungen in der Magnetresonanz-Tomografie ausgezeichnet

Jens Frahm, Leiter der Biomedizinischen NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, erhält den diesjährigen Wissenschaftspreis des Stifterverbandes für die Deutsche Wissenschaft.

Gemeinsam mit der Max-Planck-Gesellschaft ehrt der Stifterverband den Physiker für seine bahnbrechenden Weiterentwicklungen in der Magnetresonanz-Tomografie (MRT). Seine neue FLASH-Technologie machte die MRT zu einem der erfolgreichsten bildgebenden Verfahren: Sie wird heute in Kliniken weltweit routinemäßig eingesetzt.

Die mit 50 000 Euro dotierte Auszeichnung wird dem Preisträger am 5. Juni 2013 auf der MPG-Jahresversammlung in Potsdam von Stifterverbandspräsident Arend Oetker und Max-Planck-Präsident Peter Gruss verliehen. „Das Flash-Verfahren ist ein Parade-Beispiel für die erfolgreiche Anwendung von Grundlagenforschung in der Praxis. Jens Frahm hat damit der medizinischen Diagnostik einen unschätzbaren Dienst erwiesen“, so Peter Gruss.

Hat eines der inneren Organe des Unfallopfers Schaden genommen? Warum hat ein Sportler Probleme mit dem Kniegelenk? Könnte bei der Patientin das Nervengewebe krankhaft verändert sein? Diese und andere Fragen klären Mediziner auf der ganzen Welt heutzutage mithilfe der bildgebenden Magnetresonanz-Tomografie. Anders als bei Röntgentechniken ist dieses Verfahren für Patienten völlig unschädlich. Doch bis Mitte der 1980-er Jahre war die MRT für den Einsatz in der Medizin noch viel zu langsam: Eine einzelne Schichtaufnahme dauerte Minuten. An dreidimensionale Darstellungen des Körpers war gar nicht zu denken. Möglich wurde dies erst, als Jens Frahm 1985 die schnelle Aufnahmetechnik FLASH (Fast Low Angle Shot) entwickelte. Die Methode beschleunigte MRT-Bilder um mehr als das Hundertfache.

Die MRT-Technik macht sich die Wasserstoff-Atomkerne im menschlichen Körper zunutze. Diese verhalten sich wegen ihres Drehimpulses, dem Kernspin, wie winzige Magnete. Liegt ein Patient in der MRT-Röhre, die ein starkes Magnetfeld erzeugt, richten sich die Wasserstoff-Atomkerne aus. Das MRT-Gerät sendet nun zusätzlich einen kurzen Radiofrequenzpuls im UKW-Bereich aus, der die Kerne aus ihrer geordneten Ausrichtung ablenkt. Bei Rückkehr der Kernspins in ihre Ausgangslage werden Radiowellen aus dem Körper abgegeben, die sich mit empfindlichen Empfangsspulen aufzeichnen lassen. Aus vielfach wiederholten Messungen mit unterschiedlicher Ortskodierung wird dann mithilfe eines Computers ein Bild berechnet. Bis zu Frahms FLASH-Idee waren zwischen den Einzelmessungen jedoch sehr lange Wartezeiten nötig. Mit einem physikalischen Trick gelang es ihm, diese Zwangspausen zu umgehen und die Bildaufnahmezeiten radikal zu verkürzen. Im Jahr 2010 gelang Frahm mit seinen Mitarbeitern ein weiterer großer Durchbruch: FLASH 2. Dafür verwenden die Göttinger eine andere Methode der Datenaufnahme, die mit wesentlich weniger Einzelmessungen auskommt. Möglich macht dies ein neues mathematisches Bildrekonstruktionsverfahren, das Frahms Team entwickelt hat.

Durch FLASH 2 sind die MRT-Aufnahmen nochmals erheblich schneller geworden und benötigen nur noch eine Dreißigstel Sekunde. Die neue Technik macht erstmals Echtzeit-Filme vom menschlichen Herzschlag, vom Blutfluss oder von Sprech- und Schluckvorgängen mit 30 Bildern pro Sekunde möglich. Zwar sind die Computer der klinischen MRT-Geräte derzeit noch nicht schnell genug, um die Bilder parallel zur Aufnahme zu berechnen. In Göttingen können die meisten Prozesse aber schon live verfolgt werden. In Kooperation mit Medizinern soll die Echtzeit-MRT rasch in die klinische Erprobung kommen und Schritt für Schritt für die Patienten nutzbar gemacht werden. Damit rücken auch minimal-invasive Eingriffe unter direkter MRT-Kontrolle in greifbare Nähe.

Jens Frahm, Jahrgang 1951, studierte an der Georg-August-Universität Göttingen Physik und promovierte 1977 bei Hans Strehlow am Max-Planck-Institut für biophysikalische Chemie in Physikalischer Chemie. Im Anschluss forschte er als wissenschaftlicher Assistent am Institut und leitete dort von 1982 bis 1992 eine selbstständige Forschungsgruppe. Seit 1993 ist Frahm Leiter der am Max-Planck-Institut angesiedelten gemeinnützigen Biomedizinischen NMR Forschungs GmbH. Im Jahr 1997 wurde er Außerplanmäßiger Professor an der Fakultät für Chemie der Universität Göttingen. Jens Frahm ist Auswärtiges Wissenschaftliches Mitglied am Max-Planck-Institut für Dynamik und Selbstorganisation und Mitglied der Akademie der Wissenschaften zu Göttingen. Für seine Forschungsarbeiten wurde er mit zahlreichen Preisen ausgezeichnet, darunter der Gold Medal Award der International Society for Magnetic Resonance in Medicine (1991), der Karl Heinz Beckurts-Preis (1993) und der Forschungspreis der Sobek-Stiftung (2005).

Der Stifterverband für die Deutsche Wissenschaft verleiht den Wissenschaftspreis alle zwei Jahre gemeinsam mit der Max-Planck-Gesellschaft. Damit werden seit 1998 Projekte ausgezeichnet, die grundlagen- und anwendungsorientierte Forschung auf besondere Weise verbinden. Der Preis ist mit 50 000 Euro dotiert.

Ansprechpartner

Prof. Dr. Jens Frahm
Biomedizinische NMR Forschungs GmbH
http://www.biomednmr.mpg.de
Telefon: +49 551 201-1721
E-Mail: jfrahm@­gwdg.de
Dr. Carmen Rotte
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Telefon: +49 551 201-1304
Fax: +49 551 201-1151
E-Mail: crotte@­gwdg.de

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7285219/stifterverbandspreis2013_jens_frahm

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics