Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stefan Hell als Wegbereiter der Methode des Jahres geehrt

19.12.2008
Das Fachmagazin Nature Methods kürt die ultrahochauflösende Fluoreszenzmikroskopie - auch Nanoskopie genannt - zur Methode des Jahres 2008

Stefan W. Hell, Direktor am Max-Planck-Institut für biophysikalische Chemie (Göttingen), ist vom britisch-amerikanischen Fachmagazin Nature Methods für seinen Durchbruch in der Fluoreszenzmikroskopie geehrt worden.

Die von Hell begründete Revolution in der Auflösung der Fluoreszenzmikroskopie führte zu Detailschärfen in der mikroskopischen Abbildung, die weit unterhalb der halben Lichtwellenlänge von 200 Nanometern liegen, so das Fachblatt. Vorher schienen Auflösungen dieser Größenordnung physikalisch unmöglich. Mit der daraus entwickelten Fluoreszenz-Nanoskopie erhält man neue Einblicke in den Nanokosmos der Zelle.

Am Ende eines jeden Jahres zieht die Redaktion des angesehenen Fachmagazins Nature Methods, eine Tochter des Fachblatts Nature, Bilanz und kürt die "Methode des Jahres". Für 2008 ist dies die ultrahochauflösende Fluoreszenzmikroskopie oder Nanoskopie. Es waren vor allem Physiker, die an interdisziplinär ausgerichteten Forschungseinrichtungen in jüngster Zeit ausgeklügelte Wege gefunden hatten, die Lichtmikroskopie weit über akzeptierte Grenzen hinaus grundlegend zu verbessern. Als erster habe der Max-Planck-Wissenschaftler Stefan Hell im Experiment und in der Theorie gezeigt, dass eine Auflösung im Nanometerbereich mithilfe der Lichtmikroskopie erreicht werden könne. Damit sei es möglich geworden, in Zellen Details zellulärer und sogar makromolekularer Strukturen zu sehen, die bisher verborgen blieben, so das Magazin.

Mit seiner Erfindung der STED (Stimulated Emission Depletion)-Mikroskopie ist es Stefan Hell erstmals gelungen, die 1873 entdeckte Auflösungsgrenze von 200 Nanometern in der Lichtmikroskopie radikal zu unterlaufen. Mit dem STED-Mikroskop ist es möglich, in einer Zelle auch feinere Details scharf zu sehen. Mit einer in der Praxis bis zu 10-fach verbesserten Auflösung gegenüber herkömmlichen Mikroskopen lassen sich winzige, fluoreszenzmarkierte Proteinkomplexe mit einer Größe von nur 20 bis 50 Nanometern getrennt voneinander beobachten - Strukturen, die etwa 1000-mal kleiner sind als der Durchmesser eines menschlichen Haares. Aber nicht nur Momentaufnahmen aus der lebenden Zelle sind mit dem neuen STED-Mikroskop möglich. Hell und seine Mitarbeiter haben in jüngster Zeit weitere spektakuläre Verbesserungen erzielt, die es erlauben, den dynamischen Prozessen in einzelnen Zellen auf der Spur zu bleiben. Mit einer Rate von 28 Bildern pro Sekunde und einer räumlichen Auflösung von 65 Nanometern zeigt ein erstes Video lebende Nervenzellen bei ihrer Arbeit - der Signalübertragung.

Die Wissenschaftler erwarten, dass die scharfen Einblicke in lebende Zellen wichtige Erkenntnisse in der Gesundheitsforschung ermöglichen und zukünftig zur Entwicklung neuer Therapieformen führen können. Seit November 2007 ist das STED-Mikroskop auch kommerziell erhältlich. Es wird von der Firma Leica-Microsystems vertrieben.

Zur Person:

Stefan W. Hell (Jahrgang 1962) studierte nach dem Abitur in Ludwigshafen am Rhein in Heidelberg Physik. Er habe "phantastische" Physiklehrer und Hochschullehrer gehabt, denen man die Freude angemerkt habe, Physiker zu sein, Forschung zu machen und Dinge verstehen zu wollen. Nach seiner Promotion 1990 in Heidelberg verfolgte er seine Ideen zunächst als "freier Erfinder". Nach einer Zeit als Postdoktorand am EMBL in Heidelberg ging er 1993 als Gruppenleiter nach Turku, Finnland. Dort entwickelte er das Prinzip der STED-Mikroskopie. Von Turku aus wechselte Hell 1997 als Leiter einer Max-Planck-Nachwuchsgruppe an das Max-Planck-Institut für biophysikalische Chemie in Göttingen, wo er seit 2002 die Abteilung NanoBiophotonik leitet. Hell ist Wissenschaftliches Mitglied der Max-Planck-Gesellschaft und Honorarprofessor für Experimentalphysik an der Georg-August-Universität Göttingen. Für seine Leistungen wurde Stefan Hell mit zahlreichen Auszeichnungen geehrt. Er erhielt unter anderem den Preis der International Commission for Optics (2000), den Carl-Zeiss-Preis (2002), den Karl Heinz Beckurts-Preis (2002), den 10. Deutschen Zukunftspreis des Bundespräsidenten (2006), den Julius-Springer-Preis für Angewandte Physik (2007), den Gottfried-Wilhelm-Leibniz-Preis der Deutschen Forschungsgemeinschaft (2008) sowie den Niedersächsischen Staatspreis (2008).

Barbara Abrell | idw
Weitere Informationen:
http://www.nature.com/nmeth/video/moy2008/index.html
http://www.nature.com/nmeth/focus/moy2008/nmeth.f.244.pdf
http://www.nature.com/nmeth/focus/moy2008/nmeth.f.234.pdf

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG fördert für weitere drei Jahre Forschungen zu Kieselalgen
22.03.2017 | Technische Universität Dresden

nachricht Effiziente Tools für bildgebende Studien
21.03.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen