Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

1,65 Mio. Euro für ein besseres Verständnis des Immunsystems

08.08.2003


Deutsche Forschungsgemeinschaft richtet transregionale Forschergruppe Magdeburg/Bielefeld ein



Die Deutsche Forschungsgemeinschaft (DFG) hat an den Universitäten in Bielefeld und Magdeburg eine gemeinsame Forschergruppe zum Thema "Beeinflussung immunologischer Prozesse durch membrannahe Signalmodule" eingerichtet. Dabei geht es um ein besseres Verständnis der molekularen Prozesse in den zentralen Zelltypen des Immunsystems, den so genannten "T- und B-Lymphozyten". Sie schützen den Körper vor Krankheitserregern wie Viren, Bakterien, Pilzen oder Würmern. Eine der Hauptaufgaben von T-Lymphozyten ist die Abtötung virusinfizierter Körperzellen, während die B-Lymphozyten durch die Produktion von löslichen Antikörpern eingedrungene Krankheitskeime eliminieren können. Die Aktivierung dieser Abwehrmechanismen, deren Ablauf und deren rechtzeitige Abschaltung müssen aber streng kontrolliert werden, da sonst Gefahr besteht, dass körpereigene Strukturen angegriffen werden. Neben solchen Auto-Immunerkrankungen können Fehlregulationen aber auch zu Allergien oder gar zum Ausfall der Immunantwort (Immundefizienzen) führen.

... mehr zu:
»B-Lymphozyte »DFG »Immunsystem


Die neue transregionale Forschergruppe geht zurück auf eine Gemeinschaftsinitiative von Prof. Dr. Burkhart Schraven (Medizinische Fakultät der Otto-von-Guericke-Universität in Magdeburg) und Prof. Dr. Jürgen Wienands (Fakultät für Chemie der Universität Bielefeld). Bisher hatten die beiden Forschungsinstitute in Magdeburg und Bielefeld getrennt die Prozesse in T-Lymphozyten (Magdeburg) bzw. B-Lymphozyten (Bielefeld) erforscht. Unabhängig voneinander stießen beide Gruppen bei ihren Untersuchungen auf eine neuartige Klasse von Eiweißen (sog. Adapterproteinen), die wie Relaisstationen Aktivierungssignale in den Lymphozyten verschalten und prozessieren. Die beiden Forschergruppen um Prof. Schraven und Prof. Wienands wollen nun ihre langjährigen Erfahrungen gemeinsam bündeln, um die Wirkungsweise dieser Adapterproteine zu entschlüsseln. Dabei kommen molekularbiologische und biochemische Methoden sowohl an Zellkultursystemen als auch an gentechnologisch veränderten Mausstämmen zum Einsatz. Man erhofft sich davon ein besseres und letztlich medizinisch verwertbares Verständnis von den Funktionsabläufen im Immunsystem. Dieses Konzept wurde von den Fachgutachtern sowie vom Senat der DFG als äußerst erfolgversprechend und zukunftsträchtig beurteilt. Die Forschergruppe startet in diesem Herbst mit einer ersten Laufzeit von drei Jahren und einem von der DFG bereitgestellten Finanzvolumen von insgesamt 1,65 Mio. Euro.

Kontakt:

Prof. Dr. Jürgen Wienands
Fakultät für Chemie der Universität Bielefeld
Telefon: 0521 - 106-2081

Dr. Gerhard Trott | idw
Weitere Informationen:
http://www.uni-bielefeld.de

Weitere Berichte zu: B-Lymphozyte DFG Immunsystem

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie